A078849
Initial term in sequence of four consecutive primes separated by 3 consecutive differences each <=6 (i.e., when d=2,4 or 6) and forming d-pattern=[2, 6,6]; short d-string notation of pattern = [266].
Original entry on oeis.org
149, 599, 3299, 4649, 5099, 6359, 11489, 12539, 16979, 19469, 27059, 30089, 31319, 34259, 42179, 53609, 58229, 63689, 65699, 71339, 75209, 77549, 78569, 80909, 81929, 85829, 87509, 87539, 89519, 92219, 101279, 105359, 112289, 116099, 116789
Offset: 1
149, 149+2=151, 149+2+6=157, 149+2+6+6=163 are consecutive primes.
Cf. analogous prime quadruple sequences with various possible {2, 4, 6}-difference-patterns in brackets:
A007530[242],
A078847[246],
A078848[264],
A078849[266],
A052378[424],
A078850[426],
A078851[462],
A078852[466],
A078853[624],
A078854[626],
A078855[642],
A078856[646],
A078857[662],
A078858[664],
A033451[666].
-
d = {2, 6, 6}; First /@ Select[Partition[Prime@ Range@ 12000, Length@ d + 1, 1], Differences@ # == d &] (* Michael De Vlieger, May 02 2016 *)
Select[Partition[Prime[Range[12000]],4,1],Differences[#]=={2,6,6}&][[All,1]] (* Harvey P. Dale, Dec 29 2017 *)
A078853
Initial term in sequence of four consecutive primes separated by 3 consecutive differences each <=6 (i.e., when d = 2, 4 or 6) and forming d-pattern=[6,2,4]; short d-string notation of pattern = [624].
Original entry on oeis.org
1601, 3911, 5471, 8081, 12101, 12911, 13751, 14621, 17021, 32051, 38321, 40841, 43391, 58901, 65831, 67421, 67751, 68891, 69821, 72161, 80141, 89591, 90011, 90191, 97571, 100511, 102191, 111821, 112241, 122021, 125921, 129281, 129581
Offset: 1
p=1601, 1601+6=1607, 1601+6+2=1609, 1601+6+2+4=1613 are consecutive primes.
Cf. analogous prime quadruple sequences with various possible {2, 4, 6}-difference-patterns in brackets:
A007530[242],
A078847[246],
A078848[264],
A078849[266],
A052378[424],
A078850[426],
A078851[462],
A078852[466], this sequence[624],
A078854[626],
A078855[642],
A078856[646],
A078857[662],
A078858[664],
A033451[666].
-
Transpose[Select[Partition[Prime[Range[13000]], 4, 1], Differences[#]=={6, 2, 4} &]][[1]] (* Vincenzo Librandi, Jun 27 2015 *)
A052188
Primes p such that p, p+12, p+24 are consecutive primes.
Original entry on oeis.org
199, 1499, 4397, 4679, 7829, 9859, 11287, 11399, 11719, 12829, 15149, 16607, 17419, 17839, 18329, 18719, 19727, 19937, 20149, 20509, 20719, 21649, 22039, 22247, 23789, 25609, 26029, 28057, 29587, 30047, 31039, 32467, 34159, 35117, 35839, 35899, 36217, 36809, 40099
Offset: 1
a(1) = 199, followed by the consecutive primes 199 + 12 = 211, 199 + 12 + 12 = 223.
-
[p:p in PrimesUpTo(36000)| NextPrime(p)-p eq 12 and NextPrime(p+12)-p eq 24]; // Marius A. Burtea, Jan 03 2020
-
Transpose[Select[Partition[Prime[Range[3800]],3,1], Union[Differences[#]] =={12}&]][[1]] (* Harvey P. Dale, Apr 26 2011 *)
-
lista(nn) = {forprime(p=1, nn, q = nextprime(p+1); r = nextprime(q+1); if ((r-q==12) && (q-p==12), print1(p, ", ")););} \\ Michel Marcus, Jun 27 2015
A058323
Initial prime in set of 4 consecutive primes with common gap 42.
Original entry on oeis.org
23921257, 32611897, 33215597, 35650007, 44201617, 49945837, 51616717, 70350487, 70687937, 74816107, 78789707, 86066047, 99641917, 101568287, 129031187, 146922077, 149568217, 151779517, 153921017, 156793337, 162881627
Offset: 1
-
d[x_] := Prime[x+1]-Prime[x] {k1=42, k2=42, k3=42} k=0 Do[If[Equal[d[n], k1]&&Equal[d[n+1], k2]&& Equal[d[n+2], k3], k=k+1; Print[{k, n, Prime[n], Prime[n+1], Prime[n+2], Prime[n+3]}]], {n, 1, 10000000}]
Transpose[Select[Partition[Prime[Range[9000000]], 4, 1], Union[Differences[#]]=={42}&]][[1]] (* Vincenzo Librandi, Jun 21 2015 *)
A067388
Initial prime in set of 4 consecutive primes with common gap 48.
Original entry on oeis.org
55410683, 102291263, 141430363, 226383163, 280064453, 457433213, 531290533, 542418463, 555695713, 582949903, 629444003, 664652203, 665813153, 777809113, 802919653, 852404053, 887653633, 894328243, 898734673, 979048313, 993517643
Offset: 1
-
Transpose[Select[Partition[Prime[Range[10000000]], 4, 1], Union[Differences[#]]=={48}&]][[1]] (* Vincenzo Librandi, Jun 21 2015 *)
-
from sympy import isprime, nextprime
A067388_list, p = [], 2
q, r, s = p+48, p+96, p+144
while s <= 10**10:
np = nextprime(p)
if np == q and isprime(r) and isprime(s) and nextprime(q) == r and nextprime(r) == s:
A067388_list.append(p)
p, q, r, s = np, np+48, np+96, np+144 # Chai Wah Wu, Jun 01 2017
A078850
Initial term in sequence of four consecutive primes separated by 3 consecutive differences each <=6 (i.e., when d=2,4 or 6) and forming d-pattern=[4,2,6]; short d-string notation of pattern = [426].
Original entry on oeis.org
67, 1447, 2377, 2707, 5437, 5737, 7207, 9337, 11827, 12037, 19207, 21487, 21517, 23197, 26107, 26947, 28657, 31147, 31177, 35797, 37357, 37567, 42697, 50587, 52177, 65167, 67927, 69997, 71707, 74197, 79147, 81547, 103087, 103387, 106657
Offset: 1
p=67,67+4=71,67+4+2=73,67+4+2+6=79 are consecutive primes.
Cf. analogous prime quadruple sequences with various possible {2, 4, 6}-difference-patterns in brackets:
A007530[242],
A078847[246],
A078848[264],
A078849[266],
A052378[424],
A078850[426],
A078851[462],
A078852[466],
A078853[624],
A078854[626],
A078855[642],
A078856[646],
A078857[662],
A078858[664],
A033451[666].
-
d = {4, 2, 6}; First /@ Select[Partition[Prime@ Range@ 12000, Length@ d + 1, 1], Differences@ # == d &] (* Michael De Vlieger, May 02 2016 *)
A052195
Primes p such that p, p+30, p+60 are consecutive primes.
Original entry on oeis.org
69593, 110651, 134609, 228647, 237791, 250889, 303157, 318919, 396449, 421913, 498271, 507431, 535243, 554317, 629623, 642427, 642457, 668243, 692161, 716003, 729791, 780523, 782581, 790897, 801217, 825131, 829289, 847393, 892291, 902873, 940097, 942449, 963913, 995243, 1027067
Offset: 1
69593, 69623, 69653 are consecutive primes with equal distance d = 30.
110651, 110681 and 110711 are consecutive primes with equal distance d = 30.
Subsequence of
A124596 (primes followed by gap 30).
-
Select[Partition[Prime[Range[80000]],3,1],Differences[#]=={30,30}&][[All,1]] (* Harvey P. Dale, May 03 2018 *)
-
vecextract(A124596, select(t->t==30, A124596[^1]-A124596[^-1],1)) \\ Terms of A124596 with indices of first differences of 30. Gives a(1..230) from A124596(1..10^4). - M. F. Hasler, Jan 02 2020
A052239
Smallest prime p in set of 4 consecutive primes in arithmetic progression with common difference 6n.
Original entry on oeis.org
251, 111497, 74453, 1397609, 642427, 5321191, 23921257, 55410683, 400948369, 253444777, 1140813701, 491525857, 998051413, 2060959049, 4480114337, 55140921491, 38415872947, 315392068463, 15162919459, 60600021611, 278300877401, 477836574947, 1486135570643
Offset: 1
a(5) = 642427, 642457, 642487, 642517 are the smallest consecutive primes with 3 consecutive gaps of 30, cf. A052243.
From _M. F. Hasler_, Nov 06 2018: (Start)
Other terms are also initial terms of corresponding sequences:
a(1) = 251 = A033451(1) = A054800(1), start of first CPAP-4 with common gap of 6,
a(2) = 111497 = A033447(1), start of first CPAP-4 with common gap of 12,
a(3) = 74453 = A033448(1) = A054800(25), first CPAP-4 with common gap of 18,
a(4) = 1397609 = A052242(1), start of first CPAP-4 with common gap of 24,
a(5) = 642427 = A052243(1) = A052195(16), first CPAP-4 with common gap of 30,
a(6) = 5321191 = A058252(1) = A161534(26), first CPAP-4 with common gap 36 = 6^2,
a(7) = 23921257 = A058323(1), start of first CPAP-4 with common gap of 42,
a(8) = 55410683 = A067388(1), start of first CPAP-4 with common gap of 48,
a(9) = 400948369 = A259224(1), start of first CPAP-4 with common gap of 54,
a(10) = 253444777 = A210683(1) = A089234(417), CPAP-4 with common gap of 60,
a(11) = 1140813701 = A287547(1), start of first CPAP-4 with common gap of 66,
a(12) = 491525857 = A287550(1), start of first CPAP-4 with common gap of 72,
a(13) = 998051413 = A287171(1), start of first CPAP-4 with common gap of 78,
a(14) = 2060959049 = A287593(1), start of first CPAP-4 with common gap of 84,
a(15) = 4480114337 = A286817(1) = A204852(444), common distance 90. (End)
Range is a subset of
A054800: start of 4 consecutive primes in arithmetic progression (CPAP-4).
Cf.
A054701: gaps are possibly distinct multiples of 6n (not CPAP's).
-
Transpose[Flatten[Table[Select[Partition[Prime[Range[2000000]],4,1], Union[ Differences[ #]] =={6n}&,1],{n,7}],1]][[1]] (* Harvey P. Dale, Aug 12 2012 *)
-
a(n, p=[2, 0, 0], d=6*[n, n, n])={while(p+d!=p=[nextprime(p[1]+1), p[1], p[2]], ); p[3]-d[3]} \\ after M. F. Hasler in A052243; Graziano Aglietti (mg5055(AT)mclink.it), Aug 22 2010, Corrected by M. F. Hasler, Nov 06 2018
-
A052239(n, p=2, c, o)={n*=6; forprime(q=p+1, , if(p+n!=p=q, next, q!=o+2*n, c=2, c++>3, break); o=q-n); o-n} \\ M. F. Hasler, Nov 06 2018
a(7) corrected and more terms added by Graziano Aglietti (mg5055(AT)mclink.it), Aug 22 2010
A090839
Numbers k such that 6*k+1, 6*k+7, 6*k+13, 6*k+19 are consecutive primes.
Original entry on oeis.org
290, 550, 850, 1060, 2650, 3035, 3245, 5015, 5105, 8935, 10615, 11890, 12925, 13485, 13905, 14850, 15215, 15985, 17560, 17600, 18105, 19925, 20135, 21780, 23510, 24040, 25490, 28830, 31145, 34365, 36355, 38140, 38370, 42025, 43845, 46820, 47575, 48745, 49130, 50495, 53350
Offset: 1
6*290 + 1 = 1741, 6*290 + 7 = 1747, 6*290 + 13 = 1753, 6*290 + 19 = 1759 and 1741, 1747, 1753, 1759 are consecutive primes, so 290 is a term.
-
Block[{nn = 50500, s}, s = Select[Prime@ Range@ PrimePi[6 (nn + 3) - 1], Divisible[(# + 1), 6] &]; Select[Range@ nn, And[AllTrue[#, PrimeQ], Count[s, q_ /; First[#] < q < Last@ #] == 0] &@ Map[6 # + 1 &, # + Range[0, 3]] &]] (* Michael De Vlieger, Dec 06 2017 *)
fQ[n_] := Block[{p = {6n +1, 6n +7, 6n +13, 6n +19}}, Union@ PrimeQ@ p == {True} && NextPrime[6n +1, 3] == 6n +19]; Select[5 Range@ 10100, fQ] (* Robert G. Wilson v, Dec 12 2017 *)
Select[(#-1)/6&/@Select[Partition[Prime[Range[30000]],4,1],Differences[#]=={6,6,6}&][[;;,1]],IntegerQ] (* Harvey P. Dale, Apr 05 2025 *)
-
isok(n) = my(p,q,r); isprime(p=6*n+1) && ((q=6*n+7) == nextprime(p+1)) && ((r=6*n+13) == nextprime(q+1)) && (6*n+19 == nextprime(r+1)); \\ Michel Marcus, Sep 20 2019
A052189
Primes p such that p, p+18, p+36 are consecutive primes.
Original entry on oeis.org
20183, 21893, 25373, 29251, 30431, 34613, 50423, 54833, 56131, 58111, 63541, 66413, 74453, 74471, 76543, 76561, 77933, 78241, 81421, 107563, 108421, 110441, 112163, 121403, 122081, 122561, 131023, 132893, 132911, 135283, 137303, 137831, 143141, 144593, 145643
Offset: 1
20183 is a term since , 20183, 20201, and 20219 are consecutive primes with difference of 18.
-
Select[Partition[Prime[Range[15000]], 3, 1], Differences[#] == {18, 18} &][[;; , 1]] (* Amiram Eldar, Feb 28 2025 *)
-
list(lim) = {my(p1 = 2, p2 = 3); forprime(p3 = 5, lim, if(p2 - p1 == 18 && p3 - p2 == 18, print1(p1, ", ")); p1 = p2; p2 = p3);} \\ Amiram Eldar, Feb 28 2025
Comments