cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 52 results. Next

A078849 Initial term in sequence of four consecutive primes separated by 3 consecutive differences each <=6 (i.e., when d=2,4 or 6) and forming d-pattern=[2, 6,6]; short d-string notation of pattern = [266].

Original entry on oeis.org

149, 599, 3299, 4649, 5099, 6359, 11489, 12539, 16979, 19469, 27059, 30089, 31319, 34259, 42179, 53609, 58229, 63689, 65699, 71339, 75209, 77549, 78569, 80909, 81929, 85829, 87509, 87539, 89519, 92219, 101279, 105359, 112289, 116099, 116789
Offset: 1

Views

Author

Labos Elemer, Dec 11 2002

Keywords

Comments

Subsequence of A049437. - R. J. Mathar, Feb 10 2013

Examples

			149, 149+2=151, 149+2+6=157, 149+2+6+6=163 are consecutive primes.
		

Crossrefs

Cf. analogous prime quadruple sequences with various possible {2, 4, 6}-difference-patterns in brackets: A007530[242], A078847[246], A078848[264], A078849[266], A052378[424], A078850[426], A078851[462], A078852[466], A078853[624], A078854[626], A078855[642], A078856[646], A078857[662], A078858[664], A033451[666].

Programs

  • Mathematica
    d = {2, 6, 6}; First /@ Select[Partition[Prime@ Range@ 12000, Length@ d + 1, 1], Differences@ # == d &] (* Michael De Vlieger, May 02 2016 *)
    Select[Partition[Prime[Range[12000]],4,1],Differences[#]=={2,6,6}&][[All,1]] (* Harvey P. Dale, Dec 29 2017 *)

Formula

Primes p = p(i) such that p(i+1)=p+2, p(i+2)=p+2+6, p(i+3)=p+2+6+6.

Extensions

Listed terms verified by Ray Chandler, Apr 20 2009

A078853 Initial term in sequence of four consecutive primes separated by 3 consecutive differences each <=6 (i.e., when d = 2, 4 or 6) and forming d-pattern=[6,2,4]; short d-string notation of pattern = [624].

Original entry on oeis.org

1601, 3911, 5471, 8081, 12101, 12911, 13751, 14621, 17021, 32051, 38321, 40841, 43391, 58901, 65831, 67421, 67751, 68891, 69821, 72161, 80141, 89591, 90011, 90191, 97571, 100511, 102191, 111821, 112241, 122021, 125921, 129281, 129581
Offset: 1

Views

Author

Labos Elemer, Dec 11 2002

Keywords

Comments

All terms are == 11 (mod 30). Is 180 the minimal first difference? - Zak Seidov, Jun 27 2015
Subsequence of A049438. - R. J. Mathar, May 06 2017

Examples

			p=1601, 1601+6=1607, 1601+6+2=1609, 1601+6+2+4=1613 are consecutive primes.
		

Crossrefs

Cf. analogous prime quadruple sequences with various possible {2, 4, 6}-difference-patterns in brackets: A007530[242], A078847[246], A078848[264], A078849[266], A052378[424], A078850[426], A078851[462], A078852[466], this sequence[624], A078854[626], A078855[642], A078856[646], A078857[662], A078858[664], A033451[666].

Programs

  • Mathematica
    Transpose[Select[Partition[Prime[Range[13000]], 4, 1], Differences[#]=={6, 2, 4} &]][[1]] (* Vincenzo Librandi, Jun 27 2015 *)

Formula

Primes p = p(i) such that p(i+1)=p+6, p(i+2)=p+6+2, p(i+3)=p+6+2+4.

Extensions

Listed terms verified by Ray Chandler, Apr 20 2009

A052188 Primes p such that p, p+12, p+24 are consecutive primes.

Original entry on oeis.org

199, 1499, 4397, 4679, 7829, 9859, 11287, 11399, 11719, 12829, 15149, 16607, 17419, 17839, 18329, 18719, 19727, 19937, 20149, 20509, 20719, 21649, 22039, 22247, 23789, 25609, 26029, 28057, 29587, 30047, 31039, 32467, 34159, 35117, 35839, 35899, 36217, 36809, 40099
Offset: 1

Views

Author

Labos Elemer, Jan 28 2000

Keywords

Comments

Corresponds to two consecutive 12's in A001223. - - M. F. Hasler, Jan 02 2020

Examples

			a(1) = 199, followed by the consecutive primes 199 + 12 = 211, 199 + 12 + 12 = 223.
		

Crossrefs

Subsequence of A031930.
Generalization of A047948 and A033451 if 6 replaced by 12.

Programs

  • Magma
    [p:p in PrimesUpTo(36000)| NextPrime(p)-p eq 12 and  NextPrime(p+12)-p eq 24]; // Marius A. Burtea, Jan 03 2020
  • Mathematica
    Transpose[Select[Partition[Prime[Range[3800]],3,1], Union[Differences[#]] =={12}&]][[1]]  (* Harvey P. Dale, Apr 26 2011 *)
  • PARI
    lista(nn) = {forprime(p=1, nn, q = nextprime(p+1); r = nextprime(q+1); if ((r-q==12) && (q-p==12), print1(p, ", ")););} \\ Michel Marcus, Jun 27 2015
    

Extensions

Name changed by Jon E. Schoenfield, May 30 2018

A058323 Initial prime in set of 4 consecutive primes with common gap 42.

Original entry on oeis.org

23921257, 32611897, 33215597, 35650007, 44201617, 49945837, 51616717, 70350487, 70687937, 74816107, 78789707, 86066047, 99641917, 101568287, 129031187, 146922077, 149568217, 151779517, 153921017, 156793337, 162881627
Offset: 1

Views

Author

Harvey P. Dale, Dec 12 2000

Keywords

Comments

All a(n) == 7 mod 10. - Robert Israel, May 13 2015

Crossrefs

Analogous sequences (with differences in square brackets): A033451 [6], A033447 [12], A033448 [18], A052242 [24], A052243 [30], A058252 [36].

Programs

  • Mathematica
    d[x_] := Prime[x+1]-Prime[x] {k1=42, k2=42, k3=42} k=0 Do[If[Equal[d[n], k1]&&Equal[d[n+1], k2]&& Equal[d[n+2], k3], k=k+1; Print[{k, n, Prime[n], Prime[n+1], Prime[n+2], Prime[n+3]}]], {n, 1, 10000000}]
    Transpose[Select[Partition[Prime[Range[9000000]], 4, 1], Union[Differences[#]]=={42}&]][[1]] (* Vincenzo Librandi, Jun 21 2015 *)

Extensions

More terms from Labos Elemer, Jan 11 2002
Definition corrected by Robert Israel, May 13 2015
Definition edited by Zak Seidov, Jun 21 2015
Offset changed 0 -> 1 by Zak Seidov, Jun 21 2015

A067388 Initial prime in set of 4 consecutive primes with common gap 48.

Original entry on oeis.org

55410683, 102291263, 141430363, 226383163, 280064453, 457433213, 531290533, 542418463, 555695713, 582949903, 629444003, 664652203, 665813153, 777809113, 802919653, 852404053, 887653633, 894328243, 898734673, 979048313, 993517643
Offset: 1

Views

Author

Labos Elemer, Jan 21 2002

Keywords

Crossrefs

Analogous sequences (with differences in square brackets): A033451[6], A033447[12], A033448[18], A052242[24], A052243[30], A058252[36], A058323[42], this sequence[48].

Programs

  • Mathematica
    Transpose[Select[Partition[Prime[Range[10000000]], 4, 1], Union[Differences[#]]=={48}&]][[1]] (* Vincenzo Librandi, Jun 21 2015 *)
  • Python
    from sympy import isprime, nextprime
    A067388_list, p = [], 2
    q, r, s = p+48, p+96, p+144
    while s <= 10**10:
        np = nextprime(p)
        if np == q and isprime(r) and isprime(s) and nextprime(q) == r and nextprime(r) == s:
            A067388_list.append(p)
        p, q, r, s = np, np+48, np+96, np+144 # Chai Wah Wu, Jun 01 2017

Extensions

a(7)-a(21) from Donovan Johnson, Sep 05 2008

A078850 Initial term in sequence of four consecutive primes separated by 3 consecutive differences each <=6 (i.e., when d=2,4 or 6) and forming d-pattern=[4,2,6]; short d-string notation of pattern = [426].

Original entry on oeis.org

67, 1447, 2377, 2707, 5437, 5737, 7207, 9337, 11827, 12037, 19207, 21487, 21517, 23197, 26107, 26947, 28657, 31147, 31177, 35797, 37357, 37567, 42697, 50587, 52177, 65167, 67927, 69997, 71707, 74197, 79147, 81547, 103087, 103387, 106657
Offset: 1

Views

Author

Labos Elemer, Dec 11 2002

Keywords

Comments

Subsequence of A022005. - R. J. Mathar, May 06 2017

Examples

			p=67,67+4=71,67+4+2=73,67+4+2+6=79 are consecutive primes.
		

Crossrefs

Cf. analogous prime quadruple sequences with various possible {2, 4, 6}-difference-patterns in brackets: A007530[242], A078847[246], A078848[264], A078849[266], A052378[424], A078850[426], A078851[462], A078852[466], A078853[624], A078854[626], A078855[642], A078856[646], A078857[662], A078858[664], A033451[666].

Programs

  • Mathematica
    d = {4, 2, 6}; First /@ Select[Partition[Prime@ Range@ 12000, Length@ d + 1, 1], Differences@ # == d &] (* Michael De Vlieger, May 02 2016 *)

Formula

Primes p = p(i) such that p(i+1)=p+4, p(i+2)=p+4+2, p(i+3)=p+4+2+6.

Extensions

Listed terms verified by Ray Chandler, Apr 20 2009

A052195 Primes p such that p, p+30, p+60 are consecutive primes.

Original entry on oeis.org

69593, 110651, 134609, 228647, 237791, 250889, 303157, 318919, 396449, 421913, 498271, 507431, 535243, 554317, 629623, 642427, 642457, 668243, 692161, 716003, 729791, 780523, 782581, 790897, 801217, 825131, 829289, 847393, 892291, 902873, 940097, 942449, 963913, 995243, 1027067
Offset: 1

Views

Author

Labos Elemer, Jan 28 2000

Keywords

Examples

			69593, 69623, 69653 are consecutive primes with equal distance d = 30.
110651, 110681 and 110711 are consecutive primes with equal distance d = 30.
		

Crossrefs

Subsequence of A124596 (primes followed by gap 30).
Cf. A047948 (analog for gap 6), A052188 (gap 12), A052189 (gap 18), A052190 (gap 24), A053075 (a(n) + 30).
Cf. A001223 (gaps), A052243 (quadruplets with gap 30), A033451 (quadruplets with gap 6).

Programs

  • Mathematica
    Select[Partition[Prime[Range[80000]],3,1],Differences[#]=={30,30}&][[All,1]] (* Harvey P. Dale, May 03 2018 *)
  • PARI
    vecextract(A124596, select(t->t==30, A124596[^1]-A124596[^-1],1)) \\ Terms of A124596 with indices of first differences of 30. Gives a(1..230) from A124596(1..10^4). - M. F. Hasler, Jan 02 2020

Formula

{ A124596(n) | A124596(n+1) = A124596(n) + 30 }. - M. F. Hasler, Jan 02 2020

A052239 Smallest prime p in set of 4 consecutive primes in arithmetic progression with common difference 6n.

Original entry on oeis.org

251, 111497, 74453, 1397609, 642427, 5321191, 23921257, 55410683, 400948369, 253444777, 1140813701, 491525857, 998051413, 2060959049, 4480114337, 55140921491, 38415872947, 315392068463, 15162919459, 60600021611, 278300877401, 477836574947, 1486135570643
Offset: 1

Views

Author

Labos Elemer, Jan 31 2000

Keywords

Comments

See also the less restrictive A054701 where the gaps are multiples 6n. - M. F. Hasler, Nov 06 2018

Examples

			a(5) = 642427, 642457, 642487, 642517 are the smallest consecutive primes with 3 consecutive gaps of 30, cf. A052243.
From _M. F. Hasler_, Nov 06 2018: (Start)
Other terms are also initial terms of corresponding sequences:
a(1) = 251 = A033451(1) = A054800(1), start of first CPAP-4 with common gap of 6,
a(2) = 111497 = A033447(1), start of first CPAP-4 with common gap of 12,
a(3) = 74453 = A033448(1) = A054800(25), first CPAP-4 with common gap of 18,
a(4) = 1397609 = A052242(1), start of first CPAP-4 with common gap of 24,
a(5) = 642427 = A052243(1) = A052195(16), first CPAP-4 with common gap of 30,
a(6) = 5321191 = A058252(1) = A161534(26), first CPAP-4 with common gap 36 = 6^2,
a(7) = 23921257 = A058323(1), start of first CPAP-4 with common gap of 42,
a(8) = 55410683 = A067388(1), start of first CPAP-4 with common gap of 48,
a(9) = 400948369 = A259224(1), start of first CPAP-4 with common gap of 54,
a(10) = 253444777 = A210683(1) = A089234(417), CPAP-4 with common gap of 60,
a(11) = 1140813701 = A287547(1), start of first CPAP-4 with common gap of 66,
a(12) = 491525857 = A287550(1), start of first CPAP-4 with common gap of 72,
a(13) = 998051413 = A287171(1), start of first CPAP-4 with common gap of 78,
a(14) = 2060959049 = A287593(1), start of first CPAP-4 with common gap of 84,
a(15) = 4480114337 = A286817(1) = A204852(444), common distance 90. (End)
		

Crossrefs

Range is a subset of A054800: start of 4 consecutive primes in arithmetic progression (CPAP-4).
Cf. A054701: gaps are possibly distinct multiples of 6n (not CPAP's).

Programs

  • Mathematica
    Transpose[Flatten[Table[Select[Partition[Prime[Range[2000000]],4,1], Union[ Differences[ #]] =={6n}&,1],{n,7}],1]][[1]] (* Harvey P. Dale, Aug 12 2012 *)
  • PARI
    a(n, p=[2, 0, 0], d=6*[n, n, n])={while(p+d!=p=[nextprime(p[1]+1), p[1], p[2]], ); p[3]-d[3]} \\ after M. F. Hasler in A052243; Graziano Aglietti (mg5055(AT)mclink.it), Aug 22 2010, Corrected by M. F. Hasler, Nov 06 2018
    
  • PARI
    A052239(n, p=2, c, o)={n*=6; forprime(q=p+1, , if(p+n!=p=q, next, q!=o+2*n, c=2, c++>3, break); o=q-n); o-n} \\ M. F. Hasler, Nov 06 2018

Extensions

More terms from Labos Elemer, Jan 04 2002
a(7) corrected and more terms added by Graziano Aglietti (mg5055(AT)mclink.it), Aug 22 2010
a(15)-a(20) from Donovan Johnson, Oct 05 2010
a(21)-a(23) from Donovan Johnson, May 23 2011

A090839 Numbers k such that 6*k+1, 6*k+7, 6*k+13, 6*k+19 are consecutive primes.

Original entry on oeis.org

290, 550, 850, 1060, 2650, 3035, 3245, 5015, 5105, 8935, 10615, 11890, 12925, 13485, 13905, 14850, 15215, 15985, 17560, 17600, 18105, 19925, 20135, 21780, 23510, 24040, 25490, 28830, 31145, 34365, 36355, 38140, 38370, 42025, 43845, 46820, 47575, 48745, 49130, 50495, 53350
Offset: 1

Views

Author

Pierre CAMI, Dec 09 2003

Keywords

Comments

All terms are == 0 (mod 5). - Robert G. Wilson v, Dec 12 2017

Examples

			6*290 + 1 = 1741, 6*290 + 7 = 1747, 6*290 + 13 = 1753, 6*290 + 19 = 1759 and 1741, 1747, 1753, 1759 are consecutive primes, so 290 is a term.
		

Crossrefs

Programs

  • Mathematica
    Block[{nn = 50500, s}, s = Select[Prime@ Range@ PrimePi[6 (nn + 3) - 1], Divisible[(# + 1), 6] &]; Select[Range@ nn, And[AllTrue[#, PrimeQ], Count[s, q_ /; First[#] < q < Last@ #] == 0] &@ Map[6 # + 1 &, # + Range[0, 3]] &]] (* Michael De Vlieger, Dec 06 2017 *)
    fQ[n_] := Block[{p = {6n +1, 6n +7, 6n +13, 6n +19}}, Union@ PrimeQ@ p == {True} && NextPrime[6n +1, 3] == 6n +19]; Select[5 Range@ 10100, fQ] (* Robert G. Wilson v, Dec 12 2017 *)
    Select[(#-1)/6&/@Select[Partition[Prime[Range[30000]],4,1],Differences[#]=={6,6,6}&][[;;,1]],IntegerQ] (* Harvey P. Dale, Apr 05 2025 *)
  • PARI
    isok(n) = my(p,q,r); isprime(p=6*n+1) && ((q=6*n+7) == nextprime(p+1)) && ((r=6*n+13) == nextprime(q+1)) && (6*n+19 == nextprime(r+1)); \\ Michel Marcus, Sep 20 2019

Extensions

Missing term 5105 and more terms from Michel Marcus, Sep 20 2019

A052189 Primes p such that p, p+18, p+36 are consecutive primes.

Original entry on oeis.org

20183, 21893, 25373, 29251, 30431, 34613, 50423, 54833, 56131, 58111, 63541, 66413, 74453, 74471, 76543, 76561, 77933, 78241, 81421, 107563, 108421, 110441, 112163, 121403, 122081, 122561, 131023, 132893, 132911, 135283, 137303, 137831, 143141, 144593, 145643
Offset: 1

Views

Author

Labos Elemer, Jan 28 2000

Keywords

Comments

Old name was "Primes p(k) such that p(k+2)-p(k+1)=p(k+1)-p(k)=18."

Examples

			20183 is a term since , 20183, 20201, and 20219 are consecutive primes with difference of 18.
		

Crossrefs

Subsequence of A031936
A033448 is a subsequence.

Programs

  • Mathematica
    Select[Partition[Prime[Range[15000]], 3, 1], Differences[#] == {18, 18} &][[;; , 1]] (* Amiram Eldar, Feb 28 2025 *)
  • PARI
    list(lim) = {my(p1 = 2, p2 = 3); forprime(p3 = 5, lim, if(p2 - p1 == 18 && p3 - p2 == 18, print1(p1, ", ")); p1 = p2; p2 = p3);} \\ Amiram Eldar, Feb 28 2025

Extensions

Name changed by Jon E. Schoenfield, May 30 2018
Previous Showing 21-30 of 52 results. Next