cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A282513 a(n) = floor((3*n + 2)^2/24 + 1/3).

Original entry on oeis.org

0, 1, 3, 5, 8, 12, 17, 22, 28, 35, 43, 51, 60, 70, 81, 92, 104, 117, 131, 145, 160, 176, 193, 210, 228, 247, 267, 287, 308, 330, 353, 376, 400, 425, 451, 477, 504, 532, 561, 590, 620, 651, 683, 715, 748, 782, 817, 852, 888, 925, 963
Offset: 0

Views

Author

Luce ETIENNE, Feb 17 2017

Keywords

Comments

List of quadruples: 2*n*(3*n+1), (2*n+1)*(3*n+1), 6*n^2+8*n+3, (n+1)*(6*n+5). These terms belong to the sequences A033580, A033570, A126587 and A049452, respectively. See links for all the permutations.
After 0, subsequence of A025767.
It seems that a(n) is the smallest number of cells that need to be painted in a (n+1) X (n+1) grid, such that it has no unpainted hexominoes (see link to Kamenetsky and Pratt). - Rob Pratt, Dmitry Kamenetsky, Aug 30 2020

Examples

			Rectangular array with four columns:
.   0,   1,   3,   5;
.   8,  12,  17,  22;
.  28,  35,  43,  51;
.  60,  70,  81,  92;
. 104, 117, 131, 145, etc.
From _Rob Pratt_, Aug 30 2020: (Start)
For n = 3, painting only 2 cells would leave an unpainted hexomino, but painting the following 3 cells avoids all unpainted hexominoes:
    . . .
    . . X
    X X .
(End)
		

Crossrefs

Cf. A033436: floor((3*n)^2/24 + 1/3).
Cf. A130519.
Minimum number of painted cells in other n-ominoes: A337501, A337502, A337503.

Programs

  • Magma
    [(3*n^2+4*n+4) div 8: n in [0..50]]; // Bruno Berselli, Feb 17 2017
  • Mathematica
    Table[Floor[(3 n + 2)^2/24 + 1/3], {n, 0, 50}] (* or *) CoefficientList[Series[x (1 + x + x^3)/((1 + x) (1 + x^2) (1 - x)^3), {x, 0, 50}], x] (* or *) Table[(6 n^2 + 8 n + 3 + Cos[n Pi] - 4 Cos[n Pi/2])/16, {n, 0, 50}] (* or *) Table[(3 n + 2)^2/24 + 1/3 + (-6 + (1 + (-1)^n) (1 + 2 I^((n + 1) (n + 2))))/16, {n, 0, 50}] (* Michael De Vlieger, Feb 17 2017 *)
    LinearRecurrence[{2,-1,0,1,-2,1},{0,1,3,5,8,12},60] (* Harvey P. Dale, Aug 10 2024 *)
  • PARI
    a(n)=(3*n^2 + 4*n + 4)\8 \\ Charles R Greathouse IV, Feb 17 2017
    

Formula

G.f.: x*(1 + x + x^3)/((1 + x)*(1 + x^2)*(1 - x)^3).
a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6) for n>5.
a(n) = floor((3*n + 2)^2/24 + 2/3).
a(n) = (6*n^2 + 8*n + 3 + (-1)^n - 2*((-1)^((2*n - 1 + (-1)^n)/4) + (-1)^((2*n + 1 - (-1)^n)/4)))/16. Therefore:
a(2*k) = (6*k^2 + 4*k + 1 - (-1)^k)/4,
a(2*k+1) = (k + 1)*(3*k + 2)/2.
a(n) = (6*n^2 + 8*n + 3 + cos(n*Pi) - 4*cos(n*Pi/2))/16.
a(n) = (3*n + 2)^2/24 + 1/3 + (-6 + (1 + (-1)^n)*(1 + 2*i^((n+1)*(n+2))))/16, where i=sqrt(-1).
a(n) = A130519(n+3)+A130519(n+2)+A130519(n). - R. J. Mathar, Jun 23 2021

Extensions

Corrected and extended by Bruno Berselli, Feb 17 2017

A104585 a(n) = (1/2) * ( 3*n^2 - n*(-1)^n ).

Original entry on oeis.org

0, 2, 5, 15, 22, 40, 51, 77, 92, 126, 145, 187, 210, 260, 287, 345, 376, 442, 477, 551, 590, 672, 715, 805, 852, 950, 1001, 1107, 1162, 1276, 1335, 1457, 1520, 1650, 1717, 1855, 1926, 2072, 2147, 2301, 2380, 2542, 2625, 2795, 2882, 3060, 3151, 3337, 3432, 3626
Offset: 0

Views

Author

Gary W. Adamson, Mar 17 2005

Keywords

Comments

Previous name was: Pentagonal wave sequence of the second kind.
Even-indexed terms are pentagonal numbers with even index in A000326. Odd-indexed terms are second pentagonal numbers with odd index in A005449.
A104584, pentagonal wave sequence of the first kind; switches odd and even applications and vice versa in A104585. The pentagonal wave triangle, A104586, has A104584 in odd columns and A104585 in even columns.
Integer values of (n+1)(2n+1)/3 in order of appearance. - Wesley Ivan Hurt, Sep 17 2013
Exponents of q in the identity 1 - Sum_{n >= 0} ( q^(3*n+2)*Product_{k = 1..n} (1 - q^(4*k-1)) ) = 1 - q^2 - q^5 + q^15 + q^22 - q^40 - q^51 + + - - .... Compare with Euler's pentagonal number theorem: Product_{n >= 1} (1 - q^n) = 1 - Sum_{n >= 1} ( q^n*Product_{k = 1..n-1} (1 - q^k) ) = 1 - q - q^2 + q^5 + q^7 - q^12 - q^15 + + - - .... - Peter Bala, Dec 03 2020

Examples

			a(5) = 40 = A005449(5), a second pentagonal number.
a(6) = 51 = A000326(6), a pentagonal number.
		

Crossrefs

Programs

  • Magma
    I:=[0, 2, 5, 15, 22]; [n le 5 select I[n] else Self(n-1)+2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..60]]; // Vincenzo Librandi, Apr 04 2013
  • Mathematica
    Table[(1/2) (3 n^2 - n (-1)^n), {n, 0, 100}] (* Vincenzo Librandi, Apr 04 2013 *)
    LinearRecurrence[{1,2,-2,-1,1},{0,2,5,15,22},50] (* Harvey P. Dale, Sep 14 2015 *)

Formula

a(n) = (1/2) * ( 3*n^2 - n*(-1)^n ). - Ralf Stephan, Nov 13 2010
G.f.: x*(2+3*x+6*x^2+x^3)/(1-x)^3/(1+x)^2. - Colin Barker, Feb 13 2012
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). - Vincenzo Librandi, Apr 04 2013
From Amiram Eldar, Feb 22 2022: (Start)
Sum_{n>=1} 1/a(n) = 4*log(2) - Pi/sqrt(3).
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*Pi/sqrt(3) - 3*log(3). (End)

Extensions

More terms from Colin Barker, Feb 13 2012
Better name, using formula from Ralf Stephan, Joerg Arndt, Sep 17 2013

A104584 a(n) = (1/2) * ( 3*n^2 + n*(-1)^n ).

Original entry on oeis.org

0, 1, 7, 12, 26, 35, 57, 70, 100, 117, 155, 176, 222, 247, 301, 330, 392, 425, 495, 532, 610, 651, 737, 782, 876, 925, 1027, 1080, 1190, 1247, 1365, 1426, 1552, 1617, 1751, 1820, 1962, 2035, 2185, 2262, 2420
Offset: 0

Views

Author

Gary W. Adamson, Mar 17 2005

Keywords

Comments

Previous name was: Pentagonal wave sequence of the first kind.
Odd-indexed terms = A033570, pentagonal numbers with odd index (1, 12, 35, 70, ...). Even-indexed terms = A049453, 2nd pentagonal numbers with even index (0, 7, 26, 57, 100, ...).
Companion sequence A104585 (Pentagonal wave sequence of the second kind), switches odd with even applications and vice versa. The pentagonal wave sequence triangle A104586 has A104584 in odd columns and A104585 in even columns.
Exponents of q in the identity Sum_{n >= 0} ( q^n*Product_{k = 1..n} (1 - q^(4*k-3)) ) = 1 + q - q^7 - q^12 + q^26 + q^35 - - + + .... Compare with Euler's pentagonal number theorem: Product_{n >= 1} (1 - q^n) = 1 - Sum_{n >= 1} ( q^n*Product_{k = 1..n-1} (1 - q^k) ) = 1 - q - q^2 + q^5 + q^7 - q^12 - q^15 + + - - .... - Peter Bala, Dec 03 2020

Examples

			a(5) = 35 = A000326(5).
a(6) = 57 = A005449(6).
		

Crossrefs

Programs

  • Magma
    I:=[0, 1, 7, 12, 26]; [n le 5 select I[n] else Self(n-1)+2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Apr 04 2013
  • Mathematica
    Table[(1/2) (3 n^2 + n (-1)^n), {n, 0, 100}] (* Vincenzo Librandi, Apr 04 2013 *)
    LinearRecurrence[{1,2,-2,-1,1},{0,1,7,12,26},50] (* Harvey P. Dale, Feb 14 2023 *)

Formula

a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). - Vincenzo Librandi, Apr 04 2013
a(n) = (1/2) * (3*n^2 + n*(-1)^n ). - Ralf Stephan, May 20 2007
G.f. -x*(1+6*x+3*x^2+2*x^3) / ( (1+x)^2*(x-1)^3 ). - R. J. Mathar, Jan 10 2011
From Amiram Eldar, Feb 22 2022: (Start)
Sum_{n>=1} 1/a(n) = 6 - Pi/sqrt(3) - 4*log(2).
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*Pi/sqrt(3) + 3*log(3) - 6. (End)

Extensions

Better name, using formula from Ralf Stephan, Joerg Arndt, Sep 17 2013

A255607 Numbers n such that both 4*n+1 and 6*n+1 are primes.

Original entry on oeis.org

1, 3, 7, 10, 13, 18, 25, 27, 37, 45, 58, 70, 73, 87, 100, 102, 105, 112, 115, 135, 142, 153, 165, 168, 175, 177, 192, 202, 205, 213, 220, 238, 255, 258, 277, 282, 298, 300, 312, 322, 325, 352, 357, 363, 370, 373, 417, 423, 447, 465, 472, 475, 513, 520
Offset: 1

Views

Author

Vincenzo Librandi, Feb 28 2015

Keywords

Comments

Numbers n such that A033570(2n) is semiprime.

Examples

			10 is in this sequence because 4*10+1=41 and 6*10+1=61 are primes.
		

Crossrefs

Cf. A255584: semiprimes of the form (4*n+1)*(6*n+1).

Programs

  • Magma
    [n: n in [1..600] | IsPrime(6*n+1) and IsPrime(4*n+1)];
    
  • Maple
    A255607:=n->`if`(isprime(4*n+1) and isprime(6*n+1), n, NULL): seq(A255607(n), n=1..600); # Wesley Ivan Hurt, Feb 28 2015
  • Mathematica
    Select[Range[600], PrimeQ[4 # + 1] && PrimeQ[6 # + 1] &]
    Select[Range[600],AllTrue[{4#,6#}+1,PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 22 2020 *)
  • PARI
    for(n=1,10^3,if(isprime(4*n+1)&&isprime(6*n+1),print1(n,", "))) \\ Derek Orr, Mar 01 2015
    
  • PARI
    select( is_A255607(n)=isprime(4*n+1)&&isprime(6*n+1), [1..555]) \\ M. F. Hasler, Dec 13 2019

Formula

a(n) = A130800(n)/2.

A104586 Pentagonal wave sequence triangle.

Original entry on oeis.org

1, 7, 2, 12, 5, 1, 26, 15, 7, 2, 35, 22, 12, 5, 1, 57, 40, 26, 15, 7, 2, 70, 51, 35, 22, 12, 5, 1, 100, 77, 57, 40, 26, 15, 7, 2
Offset: 1

Views

Author

Gary W. Adamson, Mar 17 2005

Keywords

Comments

Row sums = A086500: 1, 9, 18, 50, 75, 147, 196...

Examples

			The first few rows are:
1;
7, 2;
12, 5, 1;
26, 15, 7, 2;
35, 22, 12, 5, 1;
57, 40, 26, 15, 7, 2;
70, 51, 35, 22, 12, 5, 1;
...
		

Crossrefs

Formula

Odd columns are terms of A104584, pentagonal wave sequence of the first kind, (starting with 1): 1, 7, 12, 26, 35, 57, 70... Even columns are terms of A104585, pentagonal wave sequence of the second kind (starting with 2): 2, 5, 15, 22, 40, 51... Odd rows are pentagonal numbers (A000326) starting with "1" at the right. Even rows are second pentagonal numbers (A005449) starting with 2 at the right. The triangle is extracted from a matrix product A * B, A = [1; 1, 2; 1, 2, 1; 1, 2, 1, 2;...], B = [1; 3, 1; 5, 3, 1; 7, 5, 3, 1;...] (both infinite lower triangular matrices, with the rest zeros).

A135712 a(n) = (4*n^3 + 11*n^2 + 9*n + 2)/2.

Original entry on oeis.org

1, 13, 48, 118, 235, 411, 658, 988, 1413, 1945, 2596, 3378, 4303, 5383, 6630, 8056, 9673, 11493, 13528, 15790, 18291, 21043, 24058, 27348, 30925, 34801, 38988, 43498, 48343, 53535, 59086, 65008, 71313, 78013, 85120, 92646, 100603, 109003, 117858, 127180
Offset: 0

Views

Author

N. J. A. Sloane, Mar 05 2008

Keywords

Comments

Binomial transform yields 1,12,23,12,0,0,0,0,0,0,.. - R. J. Mathar, Apr 21 2008

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, p. 83.

Crossrefs

Bisection of A002717 (odd part).
Partial sums of A033570. - Bruno Berselli, Nov 28 2013

Programs

  • Mathematica
    Table[(4*n^3 + 11*n^2 + 9*n + 2)/2,{n,0,25}] (* or *) LinearRecurrence[{4,-6,4,-1}, {1,13,48,118}, 25] (* G. C. Greubel, Oct 29 2016 *)

Formula

G.f.: (1 + 9*x + 2*x^2) / (1-x)^4. - R. J. Mathar, Apr 21 2008
From G. C. Greubel, Oct 29 2016: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
E.g.f.: (1/2)*(2 + 24*x + 23*x^2 + 4*x^3)*exp(x). (End)
a(n) = ((2*n+1)*(2*n+3)*(4*n+3) - 1)/8 = (n+1)*(4*n^2 + 7*n + 2)/2, for n >= 0. See the Conway and Guy reference. - Wolfdieter Lang, Apr 16 2020

A249127 a(n) = n * floor(3*n/2).

Original entry on oeis.org

0, 1, 6, 12, 24, 35, 54, 70, 96, 117, 150, 176, 216, 247, 294, 330, 384, 425, 486, 532, 600, 651, 726, 782, 864, 925, 1014, 1080, 1176, 1247, 1350, 1426, 1536, 1617, 1734, 1820, 1944, 2035, 2166, 2262, 2400, 2501, 2646, 2752, 2904, 3015, 3174, 3290, 3456, 3577, 3750, 3876, 4056, 4187, 4374, 4510
Offset: 0

Views

Author

Karl V. Keller, Jr., Oct 21 2014

Keywords

Comments

Union of A033570, that is (2*n+1)*(3*n+1), and A033581, that is 6*n^2.

Examples

			For n=5, a(n) = 5*floor(15/2) = 5*7 = 35.
		

Crossrefs

Cf. A032766, A033581 (6*n^2), A033570 (2*n+1)*(3*n+1), A001318 (n*(3*n-1)/2).

Programs

  • Magma
    [n*Floor(3*n/2): n in [0..60]]; // Vincenzo Librandi, Oct 22 2014
    
  • Maple
    seq(n*floor(3*n/2), n=0..100); # Robert Israel, Oct 26 2014
  • Mathematica
    Table[n Floor[3 n/2], {n, 0, 100}] (* Vincenzo Librandi, Oct 22 2014 *)
  • PARI
    a(n)=3*n\2*n \\ Charles R Greathouse IV, Oct 21 2014
    
  • PARI
    concat(0, Vec(-x*(2*x^3+4*x^2+5*x+1)/((x-1)^3*(x+1)^2) + O(x^100))) \\ Colin Barker, Oct 22 2014
  • Python
    from math import *
    {print(int(n*floor(3*n/2)),end=', ') for n in range(101)}
    

Formula

a(n) = n * floor(3n/2) = n * A032766(n).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). - Colin Barker, Oct 22 2014
G.f.: -x*(2*x^3+4*x^2+5*x+1) / ((x-1)^3*(x+1)^2). - Colin Barker, Oct 22 2014
a(n) = 3/2 * n^2 + ((-1)^n-1) * n/4. E.g.f.: ((3/2)*x^2+(5/4)*x)*exp(x)-(x/4)*exp(-x). - Robert Israel, Oct 26 2014

A330409 Semiprimes of the form p(6p - 1).

Original entry on oeis.org

22, 51, 145, 287, 1717, 2147, 3151, 5017, 11051, 13207, 16801, 20827, 26867, 63551, 68587, 71177, 76501, 96647, 112477, 147737, 159251, 232657, 237407, 308947, 314417, 342487, 433897, 480251, 587501, 602617, 722107, 772927, 834401, 861467, 879751, 907537, 945257, 1155887, 1177051
Offset: 1

Views

Author

M. F. Hasler, Dec 13 2019

Keywords

Examples

			A158015(1) = 2 is the smallest prime p such that 6p - 1 = 12 - 1 = 11 is also prime, whence a(1) = A049452(2) = 2*(6*2 - 1) = 22.
prime(5) = 11 is the smallest prime not in A024898 or A158015, because 6p - 1 is not a prime, therefore A049452(11) = 11*(6*11 - 1) is not in the sequence, and idem for A049452(13).
But prime(7) = 17 is in A024898 and A158015, so a(5) = A024898(A158015(5)) = A024898(17) = 17*(6*17 - 1).
		

Crossrefs

Cf. A024898 (6n-1 is prime), A158015 (primes), A049452 = {n(6n-1)}.
Complement of A255584 = A033570(A130800) (semiprimes (2n+1)(3n+1)) in A245365 (primes of the form n(3n-1)/2).

Programs

  • Mathematica
    Select[Table[p(6p-1),{p,500}],PrimeOmega[#]==2&] (* Harvey P. Dale, Apr 27 2022 *)
  • PARI
    [p*(6*p-1) | p<-primes(99), isprime(6*p-1)]

Formula

a(n) = A049452(A158015(n)) = p(6p - 1) with p = A158015(n).

A330410 a(n) = 6*prime(n) - 1.

Original entry on oeis.org

11, 17, 29, 41, 65, 77, 101, 113, 137, 173, 185, 221, 245, 257, 281, 317, 353, 365, 401, 425, 437, 473, 497, 533, 581, 605, 617, 641, 653, 677, 761, 785, 821, 833, 893, 905, 941, 977, 1001, 1037, 1073, 1085, 1145, 1157, 1181, 1193, 1265, 1337, 1361, 1373, 1397, 1433, 1445
Offset: 1

Views

Author

M. F. Hasler, Dec 13 2019

Keywords

Comments

Composite terms are a(k) with k in {5, 6, 11, 12, 13, 18, 20, 21, ...} = indices of primes missing in A158015. Primes are A016969(A158015 - 1).

Crossrefs

Cf. A000040 (primes), A016969 (6n+5), A024898 (6n-1 is prime), A158015 (primes in A024898), A049452 = {n(6n-1)}, A255584 = A033570(A130800) (semiprimes (2n+1)(3n+1)), A245365 (primes of the form n(3n-1)/2).

Programs

  • PARI
    apply( a(n)=6*prime(n)-1, [1..99])
    
  • PARI
    apply( n->6*n-1, primes(99))

Formula

a(n) = A016969(A000040(n)-1) = 6p - 1 with p = A000040(n) = prime(n).
Previous Showing 11-19 of 19 results.