cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A224475 (2*5^(2^n) + (10^n)/2 - 1) mod 10^n: a sequence of trimorphic numbers ending (for n > 1) in 9.

Original entry on oeis.org

4, 99, 749, 6249, 31249, 281249, 781249, 75781249, 925781249, 1425781249, 86425781249, 336425781249, 4836425781249, 69836425781249, 19836425781249, 7519836425781249, 62519836425781249, 12519836425781249, 9512519836425781249, 34512519836425781249
Offset: 1

Views

Author

Eric M. Schmidt, Apr 07 2013

Keywords

Comments

a(n) is the unique positive integer less than 10^n such that a(n) + 2^(n-1) - 1 is divisible by 2^n and a(n) + 1 is divisible by 5^n.

Crossrefs

Cf. A033819. Converges to the 10-adic number A091661. The other trimorphic numbers ending in 9 are included in A002283, A198971, and A224473.

Programs

  • Mathematica
    Table[Mod[2*5^2^n+(10^n/2)-1,10^n],{n,20}] (* Harvey P. Dale, Sep 08 2024 *)
  • Sage
    def A224475(n) : return crt(2^(n-1)+1, -1, 2^n, 5^n)

Formula

a(n) = (A224473(n) + 10^n / 2) mod 10^n.

A224476 (2*16^(5^n) + (10^n)/2 - 1) mod 10^n: a sequence of trimorphic numbers ending (for n > 1) in 1.

Original entry on oeis.org

6, 1, 251, 3751, 68751, 718751, 9218751, 24218751, 74218751, 8574218751, 13574218751, 663574218751, 5163574218751, 30163574218751, 980163574218751, 2480163574218751, 37480163574218751, 987480163574218751, 487480163574218751, 65487480163574218751
Offset: 1

Views

Author

Eric M. Schmidt, Apr 07 2013

Keywords

Comments

a(n) is the unique positive integer less than 10^n such that a(n) + 2^(n-1) + 1 is divisible by 2^n and a(n) - 1 is divisible by 5^n.

Crossrefs

Cf. A033819. Converges to the 10-adic number A063006. The other trimorphic numbers ending in 1 are included in A199685 and A224474.

Programs

  • Sage
    def A224476(n) : return crt(2^(n-1)-1, 1, 2^n, 5^n)

Formula

a(n) = (A224474(n) + 10^n/2) mod 10^n.

A306570 Values of n such that 5^n ends in n, or expomorphic numbers relative to "base" 5.

Original entry on oeis.org

5, 25, 125, 3125, 203125, 8203125, 408203125, 8408203125, 18408203125, 618408203125, 2618408203125, 52618408203125, 152618408203125, 3152618408203125, 93152618408203125, 493152618408203125, 7493152618408203125, 17493152618408203125, 117493152618408203125, 7117493152618408203125, 87117493152618408203125
Offset: 1

Views

Author

Bernard Schott, Feb 24 2019

Keywords

Comments

Definition: For positive integers b (as base) and n, the positive integer (allowing initial zeros) k(n) is expomorphic relative to base b (here 5) if k(n) has exactly n decimal digits and if b^k(n) == k(n) (mod 10^n) or, equivalently, b^k(n) ends in k(n). [See Crux Mathematicorum link.]
For sequences in the OEIS, no term is allowed to begin with a digit 0 (except for the 1-digit number 0 itself). However, in the problem as defined in the Crux Mathematicorum article, leading 0 digits are allowed; under that definition a(n) = k(n) until the first k(n) which begins with digit 0. When k(n) begins with 0, then, a(n) is the next term of the sequence k(n) which doesn't begin with digit 0.
Under that definition, the term after a(4) = 3125 is not "03125" but a(5) = 203125. [Comments from Jon E. Schoenfield in A288845 and discussion with Rémy Sigrist]
Conjecture: if k(n) is expomorphic relative to "base" b, then, the next one in the sequence, k(n+1), consists of the last n+1 digits of b^k(n).
a(n) is the backward concatenation of A133615(0) through A133615(n-1). So, a(1) is 5, a(2) is 25, and so on, with recognition of the comments about the OEIS and terms beginning with 0 (for example, when n = 5, A133615(n-1) = 0, so the next nonzero digit is concatenated as well, reducing the amount subtracted from n by 1). - Davis Smith Mar 07 2019

Examples

			5^5 = 25 ends in 5, so 5 is a term; 5^25 = ...125 ends in 25, so 25 is another term.
		

Crossrefs

Cf. A064541 (base 2), A183613 (base 3), A288845 (base 4), A290788 (base 6), A321970 (base 7), A306686 (base 9), A289138 (smallest expomorphic number in base n).
Cf. A003226 (automorphic numbers), A033819 (trimorphic numbers).
Cf. A133615 (leading digits).

Programs

  • PARI
    is(n) = my(t=#digits(n)); lift(Mod(5, 10^t)^n)==n
    for(n=1, oo, my(x=n*5); if(lift(Mod(5, 10)^x)==x%10, if(is(x), print1(x, ", ")))) \\ Felix Fröhlich, Feb 24 2019
    
  • PARI
    tetrmod(b,n,m)=my(t=b); for(i=1, n, if(i>1, t=lift(Mod(b,m)^t), t)); t
    for(n=1, 21,if(tetrmod(5,n,10^n)!=tetrmod(5,n-1,10^(n-1)),print1(tetrmod(5,n,10^(n-1)),", "))) \\ Davis Smith, Mar 09 2019

Extensions

a(5)-a(7) from Felix Fröhlich, Feb 24 2019
a(8) from Michel Marcus, Mar 02 2019
a(9)-a(21) from Davis Smith, Mar 07 2019

A072496 k-morphic numbers for any k such that (k-1)/10 is an odd integer not divisible by 5.

Original entry on oeis.org

0, 1, 4, 5, 6, 9, 11, 16, 19, 21, 24, 25, 29, 31, 36, 39, 41, 44, 49, 51, 56, 59, 61, 64, 69, 71, 75, 76, 79, 81, 84, 89, 91, 96, 99, 101, 125, 149, 151, 176, 199, 201, 224, 249, 251, 299, 301, 349, 351, 375, 376, 399, 401, 424, 449, 451, 499, 501, 549, 551
Offset: 1

Views

Author

Benoit Cloitre, Oct 19 2002

Keywords

Comments

Definition: n is a k-morphic number if n^k ends with n.

Crossrefs

Cf. A072495.
3-morphic numbers = 7-morphic numbers, see A033819; 5-morphic numbers = 13-morphic numbers, see A068407.

Programs

  • PARI
    k=11; for(n=1,10000,if((n^k)%(10^ceil(log(n)/log(10)))==n, print1(n,","))); \\ starting with 4, 5, ...
    
  • Sage
    def automorphic(maxdigits, pow, base=10) :
        morphs = [[0]]
        for i in range(maxdigits):
            T=[d*base^i+x for x in morphs[-1] for d in range(base)]
            morphs.append([x for x in T if x^pow % base^(i+1) == x])
        res = list(set(sum(morphs, []))); res.sort()
        return res
    # (call with pow=11 for this sequence), Eric M. Schmidt, Jul 30 2013

Extensions

Sequence corrected by Eric M. Schmidt, Jul 30 2013

A224477 (5^(2^n) + (10^n)/2) mod 10^n: a sequence of trimorphic numbers ending (for n > 1) in 5.

Original entry on oeis.org

0, 75, 125, 5625, 40625, 390625, 7890625, 62890625, 712890625, 3212890625, 68212890625, 418212890625, 4918212890625, 9918212890625, 759918212890625, 1259918212890625, 6259918212890625, 756259918212890625, 7256259918212890625, 42256259918212890625
Offset: 1

Views

Author

Eric M. Schmidt, Apr 07 2013

Keywords

Comments

a(n) is the unique nonnegative integer less than 10^n such that a(n) + 2^(n-1) - 1 is divisible by 2^n and a(n) is divisible by 5^n.

Crossrefs

Cf. A033819. Converges to the 10-adic number A018247. The other trimorphic numbers ending in 5 are included in A007185, A216093, and A224478.

Programs

  • Sage
    def A224477(n) : return crt(2^(n-1)+1, 0, 2^n, 5^n)

Formula

a(n) = (A007185(n) + 10^n/2) mod 10^n.

A224478 (16^(5^n) + (10^n)/2 - 1) mod 10^n: a sequence of trimorphic numbers ending (for n > 1) in 5.

Original entry on oeis.org

0, 25, 875, 4375, 59375, 609375, 2109375, 37109375, 287109375, 6787109375, 31787109375, 581787109375, 5081787109375, 90081787109375, 240081787109375, 8740081787109375, 93740081787109375, 243740081787109375, 2743740081787109375, 57743740081787109375
Offset: 1

Views

Author

Eric M. Schmidt, Apr 07 2013

Keywords

Comments

a(n) is the unique nonnegative integer less than 10^n such that a(n) + 2^(n-1) + 1 is divisible by 2^n and a(n) is divisible by 5^n.

Crossrefs

Cf. A033819. Converges to the 10-adic number A091663. The other trimorphic numbers ending in 5 are included in A007185, A216093, and A224477.

Programs

  • Sage
    def A224478(n) : return crt(2^(n-1)-1, 0, 2^n, 5^n)

Formula

a(n) = (A016090(n) + 10^n/2 - 1) mod 10^n.

A290788 Values of n such that 6^n ends in n, or expomorphic numbers in "base" 6.

Original entry on oeis.org

6, 56, 656, 8656, 38656, 238656, 7238656, 47238656, 447238656, 7447238656, 27447238656, 227447238656, 3227447238656
Offset: 1

Views

Author

Bernard Schott, Aug 10 2017

Keywords

Comments

Definition: For positive integers b (as base) and n, the positive integer (allowing initial 0's) a(n) is expomorphic relative to base b (here 6) if a(n) has exactly n decimal digits and if b^a(n) == a(n) (mod 10^n) or, equivalently, b^a(n) ends in a(n). [See Crux Mathematicorum link.]

Examples

			6^6 = 46656 ends in 6, so 6 is a term.
6^56 = ...656 ends in 56, so 56 is another term.
		

Crossrefs

Cf. A064541 (base 2), A183613 (base 3), A288845 (base 4), A289138, A306570 (base 5), A306686 (base 9).
Cf. A003226 (automorphic numbers), A033819 (trimorphic numbers).

Programs

  • Mathematica
    Select[Range[10^6], PowerMod[6, #, 10^(1 + Floor@ Log10[#])] == # &] (* Michael De Vlieger, Apr 13 2021 *)
  • PARI
    is(n)=my(m=10^#digits(n)); Mod(6,m)^n==n \\ Charles R Greathouse IV, Aug 10 2017

Extensions

a(6)-a(9) from Charles R Greathouse IV, Aug 10 2017
a(10)-a(13) from Chai Wah Wu, Apr 13 2021

A076650 m-morphic numbers for any m equal to 26 (mod 50).

Original entry on oeis.org

5, 6, 16, 21, 25, 36, 41, 56, 61, 76, 81, 96, 121, 136, 161, 176, 201, 216, 241, 256, 281, 296, 321, 336, 361, 376, 401, 416, 441, 456, 481, 496, 521, 536, 561, 576, 601, 616, 625, 641, 656, 681, 696, 721, 736, 761, 776, 801, 816, 841, 856, 881, 896, 921, 936, 961, 976
Offset: 1

Views

Author

Benoit Cloitre, Oct 24 2002

Keywords

Crossrefs

Cf. A033819.

A181607 Numbers n with k digits such that n^2 == 1 (mod 10^k).

Original entry on oeis.org

1, 9, 49, 51, 99, 249, 251, 499, 501, 749, 751, 999, 1249, 3751, 4999, 5001, 6249, 8751, 9999, 18751, 31249, 49999, 50001, 68751, 81249, 99999, 218751, 281249, 499999, 500001, 718751, 781249, 999999, 4218751, 4999999, 5000001, 5781249, 9218751
Offset: 1

Views

Author

Robert G. Wilson v, Nov 01 2010

Keywords

Comments

Least term of n digits: 1, 49, 249, 1249, 18751, 218751, 4218751, ..., .
If n of k digits is present then 10^k-n is present.
The union of A002283, A198971, A199685, A224473, A224474, A224475, and A224476 (except that this sequence omits 0, 4, and 6). - Eric M. Schmidt, Jan 26 2016

Crossrefs

Programs

  • Mathematica
    Table[ Select[ Range[10^(k - 1), 10^k - 1], Mod[ #^2, 10^k] == 1 &], {k, 7}] // Flatten

A227071 Let s(m) = the set of k > 0 such that k^m ends with k. Then a(n) = least m such that s(m) = s(n).

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 3, 2, 9, 2, 11, 2, 5, 2, 3, 6, 17, 2, 3, 2, 21, 2, 3, 2, 9, 26, 3, 2, 5, 2, 11, 2, 33, 2, 3, 6, 5, 2, 3, 2, 41, 2, 3, 2, 5, 6, 3, 2, 17, 2, 51, 2, 5, 2, 3, 6, 9, 2, 3, 2, 21, 2, 3, 2, 65, 6, 3, 2, 5, 2, 11, 2, 9, 2, 3, 26, 5, 2, 3, 2, 81, 2
Offset: 1

Views

Author

T. D. Noe, Jul 29 2013

Keywords

Comments

See A227070 for more details and for the numbers n such that n = a(n).
The entries in the b-file have been tentatively obtained by comparing the terms < 10^30 in the sets s(n). - Giovanni Resta, Jul 30 2013

Crossrefs

Cf. A003226 (n=2), A033819 (n=3), A068407 (n=5), A068408 (n=6).
Cf. A072496 (n=11), A072495 (n=21), A076650 (n=26).
Cf. A227070 (n such that n = a(n)).

Programs

  • Mathematica
    ts = {{}}; t2 = {1}; te = {1}; Do[s = Select[Range[0, 10^7], PowerMod[#, n, 10^IntegerLength[#]] == # &]; If[MemberQ[ts, s], AppendTo[t2, te[[Position[ts, s, 1, 1][[1, 1]]]]], AppendTo[ts, s]; AppendTo[te, n]; AppendTo[t2, n]], {n, 2, 82}]; t2

Formula

Conjecture: a(n+1) = A132741(n) + 1. - Eric M. Schmidt, Jul 30 2013

Extensions

Mathematica program and some entries corrected by Giovanni Resta, Jul 30 2013
Previous Showing 11-20 of 30 results. Next