cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A143203 Numbers having exactly two distinct prime factors p, q with q = p+4.

Original entry on oeis.org

21, 63, 77, 147, 189, 221, 437, 441, 539, 567, 847, 1029, 1323, 1517, 1701, 2021, 2873, 3087, 3757, 3773, 3969, 4757, 5103, 5929, 6557, 7203, 8303, 9261, 9317, 9797, 10051, 11021, 11907, 12317, 15309, 16637, 21609
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 12 2008

Keywords

Comments

Subsequence of A007774.
A033850 is a subsequence.
Subsequence of A195106. - Reinhard Zumkeller, Sep 13 2011

Examples

			a(1) = 21 = 3 * 7 = A023200(1) * A046132(1).
a(2) = 63 = 3^2 * 7 = A023200(1)^2 * A046132(1).
a(3) = 77 = 7 * 11 = A023200(2) * A046132(2).
a(4) = 147 = 3 * 7^2 = A023200(1) * A046132(1)^2.
a(5) = 189 = 3*3 * 7 = A023200(1)^3 * A046132(1).
a(6) = 221 = 13 * 17 = A023200(3) * A046132(3).
a(7) = 437 = 19 * 23 = A023200(4) * A046132(4).
a(8) = 441 = 3^2 * 7^2 = A023200(1)^2 * A046132(1)^2.
a(9) = 539 = 7^2 * 11 = A023200(2)^2 * A046132(2).
a(10) = 567 = 3^4 * 7 = A023200(1)^4 * A046132(1).
		

Crossrefs

Programs

  • Haskell
    a143203 n = a143203_list !! (n-1)
    a143203_list = filter f [1,3..] where
       f x = length pfs == 2 && last pfs - head pfs == 4 where
           pfs = a027748_row x
    -- Reinhard Zumkeller, Sep 13 2011
  • Mathematica
    dpf2Q[n_]:=Module[{fi=FactorInteger[n][[;;,1]]},Length[fi]==2&&fi[[2]]-fi[[1]]==4]; Select[Range[22000],dpf2Q] (* Harvey P. Dale, Mar 18 2023 *)

Formula

A143201(a(n)) = 5.
A020639(a(n)) in A023200 and A006530(a(n)) in A046132.
A001221(a(n)) = 2.
Sum_{n>=1} 1/a(n) = Sum_{n>=1} 1/((A023200(n)+1)^2-4) = 0.109882433872... . - Amiram Eldar, Oct 26 2024

A288162 Numbers whose prime factors are 2 and 13.

Original entry on oeis.org

26, 52, 104, 208, 338, 416, 676, 832, 1352, 1664, 2704, 3328, 4394, 5408, 6656, 8788, 10816, 13312, 17576, 21632, 26624, 35152, 43264, 53248, 57122, 70304, 86528, 106496, 114244, 140608, 173056, 212992, 228488, 281216, 346112, 425984, 456976, 562432, 692224, 742586, 851968, 913952
Offset: 1

Views

Author

Bernard Schott, Jun 06 2017

Keywords

Comments

Numbers k such that phi(k)/k = 6/13.

Crossrefs

Programs

  • Magma
    [n:n in [1..100000] | Set(PrimeDivisors(n)) eq {2,13}];  // Marius A. Burtea, May 10 2019
  • Mathematica
    Select[Range[920000],FactorInteger[#][[All,1]]=={2,13}&] (* Harvey P. Dale, Jun 18 2021 *)
  • PARI
    is(n) = factor(n)[, 1]~==[2, 13] \\ Felix Fröhlich, Jun 06 2017
    
  • PARI
    list(lim)=my(v=List(),t); for(n=1,logint(lim\2,13), t=13^n; while((t<<=1)<=lim, listput(v,t))); Set(v) \\ Charles R Greathouse IV, Jun 11 2017
    

Formula

a(n) = 26 * A107326(n). - David A. Corneth, Jun 06 2017
Sum_{n>=1} 1/a(n) = 1/12. - Amiram Eldar, Dec 22 2020

A343300 a(n) is p1^1 + p2^2 + ... + pk^k where {p1,p2,...,pk} are the distinct prime factors in ascending order in the prime factorization of n.

Original entry on oeis.org

0, 2, 3, 2, 5, 11, 7, 2, 3, 27, 11, 11, 13, 51, 28, 2, 17, 11, 19, 27, 52, 123, 23, 11, 5, 171, 3, 51, 29, 136, 31, 2, 124, 291, 54, 11, 37, 363, 172, 27, 41, 354, 43, 123, 28, 531, 47, 11, 7, 27, 292, 171, 53, 11, 126, 51, 364, 843, 59, 136, 61, 963, 52, 2, 174, 1342, 67, 291, 532, 370, 71, 11, 73
Offset: 1

Views

Author

Giorgos Kalogeropoulos, Apr 11 2021

Keywords

Comments

From Bernard Schott, May 07 2021: (Start)
a(n) depends only on prime factors of n (see formulas).
Primes are fixed points of this sequence.
Terms are in increasing order in A344023. (End)

Examples

			a(60) = 136 because the distinct prime factors of 60 are {2, 3, 5} and 2^1 + 3^2 + 5^3 = 136.
		

Crossrefs

Cf. A027748, A344023 (terms ordered).

Programs

  • Maple
    a:= n-> (l-> add(l[i]^i, i=1..nops(l)))(sort(map(i-> i[1], ifactors(n)[2]))):
    seq(a(n), n=1..73);  # Alois P. Heinz, Sep 19 2024
  • Mathematica
    {0}~Join~Table[Total[(a=First/@FactorInteger[k])^Range@Length@a],{k, 2, 100}]
  • PARI
    a(n) = my(f=factor(n)); sum(k=1, #f~, f[k,1]^k); \\ Michel Marcus, Apr 11 2021

Formula

a(p^k) = p for p prime and k>=1.
From Bernard Schott, May 07 2021: (Start)
a(A033845(n)) = 11;
a(A033846(n)) = 27;
a(A033847(n)) = 51;
a(A033848(n)) = 123;
a(A033849(n)) = 28;
a(A033850(n)) = 52;
a(A033851(n)) = 54;
a(A288162(n)) = 171. (End)

A339794 a(n) is the least integer k satisfying rad(k)^2 < sigma(k) and whose prime factors set is the same as the prime factors set of A005117(n+1).

Original entry on oeis.org

4, 9, 25, 18, 49, 80, 121, 169, 112, 135, 289, 361, 441, 352, 529, 416, 841, 360, 961, 891, 1088, 875, 1369, 1216, 1053, 1681, 672, 1849, 1472, 2209, 2601, 2809, 3025, 3249, 1856, 3481, 3721, 1984, 4225, 1584, 4489, 4761, 1960, 5041, 5329, 4736, 5929, 2496, 6241
Offset: 1

Views

Author

Michel Marcus, Dec 17 2020

Keywords

Comments

Equivalently, subsequence of terms of A339744 excluding terms whose prime factor set has already been encountered.
a(n) = A005117(n + 1)^2 when A005117(n + 1) is prime. Proof: if A005117(n + 1) is a prime p then rad(A005117(n + 1))^2 = rad(p)^2 = p^2 and so integers whose prime factors set is the same as the prime factors set of A005117(n + 1) = p are p^m where m >= 1. p^2 > sigma(p^1) = p + 1 but p^2 < sigma(p^2) = p^2 + p + 1. Q.E.D. - David A. Corneth, Dec 19 2020
From Bernard Schott, Jan 19 2021: (Start)
Indeed, a(n) satisfies the double inequality A005117(n+1) < a(n) <= A005117(n+1)^2.
It is also possible that a(n) = A005117(n+1)^2, even when A005117(n+1) is not prime; the smallest such example is for a(13) = 441 = 21^2 = A005117(14)^2. (End)

Examples

			   n  a(n) prime factor set
   1    4  [2]           A000079
   2    9  [3]           A000244
   3   25  [5]           A000351
   4   18  [2, 3]        A033845
   5   49  [7]           A000420
   6   80  [2, 5]        A033846
   7  121  [11]          A001020
   8  169  [13]          A001022
   9  112  [2, 7]        A033847
  10  135  [3, 5]        A033849
  11  289  [17]          A001026
  12  361  [19]          A001029
  13  441  [3, 7]        A033850
  14  352  [2, 11]       A033848
  15  529  [23]          A009967
  16  416  [2, 13]       A288162
  17  841  [29]          A009973
  18  360  [2, 3, 5]     A143207
		

Crossrefs

Cf. A000203 (sigma), A007947 (rad).
Cf. A005117 (squarefree numbers), A027748, A265668, A339744.
Subsequence: A001248 (squares of primes).

Programs

  • PARI
    u(n) = {my(fn=factor(n)[,1]); for (k = n, n^2, my(fk = factor(k)); if (fk[,1] == fn, if (factorback(fk[,1])^2 < sigma(fk), return (k));););}
    lista(nn) = {for (n=2, nn, if (issquarefree(n), print1(u(n), ", ");););}

Formula

a(n) <= A005117(n+1)^2. - David A. Corneth, Dec 19 2020
Previous Showing 11-14 of 14 results.