A080245
Inverse of coordination sequence array A113413.
Original entry on oeis.org
1, -2, 1, 6, -4, 1, -22, 16, -6, 1, 90, -68, 30, -8, 1, -394, 304, -146, 48, -10, 1, 1806, -1412, 714, -264, 70, -12, 1, -8558, 6752, -3534, 1408, -430, 96, -14, 1, 41586, -33028, 17718, -7432, 2490, -652, 126, -16, 1
Offset: 0
Rows are {1}, {-2, 1}, {6, -4, 1}, {-22, 16, -6, 1}, ....
From _Paul Barry_, Apr 28 2009: (Start)
Triangle begins
1,
-2, 1,
6, -4, 1,
-22, 16, -6, 1,
90, -68, 30, -8, 1,
-394, 304, -146, 48, -10, 1,
1806, -1412, 714, -264, 70, -12, 1
Production matrix is
-2, 1,
2, -2, 1,
-2, 2, -2, 1,
2, -2, 2, -2, 1,
-2, 2, -2, 2, -2, 1,
2, -2, 2, -2, 2, -2, 1,
-2, 2, -2, 2, -2, 2, -2, 1 (End)
Row sums are signed little Schroeder numbers
A080243. Diagonal sums are given by
A080244.
Essentially same triangle as
A033877 but with rows read in reversed order.
A378238
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(n,r) * binomial(3*n+r+k,n)/(3*n+r+k) for k > 0.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 4, 14, 0, 1, 6, 32, 134, 0, 1, 8, 54, 324, 1482, 0, 1, 10, 80, 578, 3696, 17818, 0, 1, 12, 110, 904, 6810, 45316, 226214, 0, 1, 14, 144, 1310, 11008, 85278, 583152, 2984206, 0, 1, 16, 182, 1804, 16490, 140936, 1113854, 7769348, 40503890, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, 12, ...
0, 14, 32, 54, 80, 110, 144, ...
0, 134, 324, 578, 904, 1310, 1804, ...
0, 1482, 3696, 6810, 11008, 16490, 23472, ...
0, 17818, 45316, 85278, 140936, 216002, 314700, ...
0, 226214, 583152, 1113854, 1870352, 2914790, 4320608, ...
T(n,n) gives 1/4 *
A370102(n) for n > 0.
-
T(n, k, t=3, u=1) = if(k==0, 0^n, k*sum(r=0, n, binomial(n, r)*binomial(t*n+u*r+k, n)/(t*n+u*r+k)));
matrix(7, 7, n, k, T(n-1, k-1))
Original entry on oeis.org
1, 6, 31, 154, 763, 3808, 19197, 97772, 502749, 2607658, 13630635, 71743478, 379949431, 2023314980, 10828048409, 58206726936, 314157742457, 1701817879214, 9249717805207, 50427858276754, 275695956722547, 1511164724634440, 8302888160922965
Offset: 1
-
A227505 := proc(n) local k, T; T := proc(n, k) option remember; if n=1 then return(1) fi; if kA227505(n), n = 1..23);
A227505 := proc(n): A006603(n+3) - A006318(n+3) - A006319(n+2) end: A006603 := n -> add((k*add(binomial(n-k+2, i)*binomial(2*n-3*k-i+3, n-k+1), i= 0.. n-2*k+2))/(n-k+2), k= 1.. n/2+1): A006318 := n -> add(binomial(n+k, n-k) * binomial(2*k, k)/(k+1), k=0..n): A006319 := proc(n): if n=0 then 1 else A006318(n) - A006318(n-1) fi: end: seq(A227505(n), n=1..23);
A378237
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(n,r) * binomial(n+3*r+k,n)/(n+3*r+k) for k > 0.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 4, 10, 0, 1, 6, 24, 74, 0, 1, 8, 42, 188, 642, 0, 1, 10, 64, 350, 1680, 6082, 0, 1, 12, 90, 568, 3234, 16212, 60970, 0, 1, 14, 120, 850, 5440, 31878, 164584, 635818, 0, 1, 16, 154, 1204, 8450, 54888, 328426, 1732172, 6826690, 0, 1, 18, 192, 1638, 12432, 87402, 574848, 3494142, 18728352, 74958914, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, 12, ...
0, 10, 24, 42, 64, 90, 120, ...
0, 74, 188, 350, 568, 850, 1204, ...
0, 642, 1680, 3234, 5440, 8450, 12432, ...
0, 6082, 16212, 31878, 54888, 87402, 131964, ...
0, 60970, 164584, 328426, 574848, 931770, 1433544, ...
-
T(n, k, t=1, u=3) = if(k==0, 0^n, k*sum(r=0, n, binomial(n, r)*binomial(t*n+u*r+k, n)/(t*n+u*r+k)));
matrix(7, 7, n, k, T(n-1, k-1))
A378239
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(n,r) * binomial(2*n+2*r+k,n)/(2*n+2*r+k) for k > 0.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 4, 12, 0, 1, 6, 28, 100, 0, 1, 8, 48, 248, 968, 0, 1, 10, 72, 452, 2480, 10208, 0, 1, 12, 100, 720, 4680, 26688, 113792, 0, 1, 14, 132, 1060, 7728, 51504, 301648, 1318832, 0, 1, 16, 168, 1480, 11800, 87104, 591312, 3531424, 15732064, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, 12, ...
0, 12, 28, 48, 72, 100, 132, ...
0, 100, 248, 452, 720, 1060, 1480, ...
0, 968, 2480, 4680, 7728, 11800, 17088, ...
0, 10208, 26688, 51504, 87104, 136352, 202560, ...
0, 113792, 301648, 591312, 1017184, 1621280, 2454256, ...
-
T(n, k, t=2, u=2) = if(k==0, 0^n, k*sum(r=0, n, binomial(n, r)*binomial(t*n+u*r+k, n)/(t*n+u*r+k)));
matrix(7, 7, n, k, T(n-1, k-1))
A006321
Royal paths in a lattice.
Original entry on oeis.org
1, 8, 48, 264, 1408, 7432, 39152, 206600, 1093760, 5813000, 31019568, 166188552, 893763840, 4823997960, 26124870640, 141926904328, 773293020928, 4224773978632, 23139861329456, 127039971696392, 698993630524032, 3853860616119048, 21288789223825648
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- G. Kreweras, Sur les hiérarchies de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973).
- G. Kreweras, Sur les hiérarchies de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973). (Annotated scanned copy)
-
1,seq(4*sum(binomial(n,j)*binomial(n+3+j,n-1),j=0..n)/n,n=1..17);
-
Flatten[{1, RecurrenceTable[{n*(n+4)*a[n] == (5*n^2+14*n+21)*a[n-1] + (5*n^2-4*n+12)*a[n-2] - (n-3)*(n+1)*a[n-3], a[1] == 8, a[2] == 48,a[3] == 264}, a, {n,25}]}] (* Vaclav Kotesovec, Oct 05 2012 *)
A144944
Super-Catalan triangle (read by rows) = triangular array associated with little Schroeder numbers (read by rows): T(0,0)=1, T(p,q) = T(p,q-1) if 0 < p = q, T(p,q) = T(p,q-1) + T(p-1,q) + T(p-1,q-1) if -1 < p < q and T(p,q) = 0 otherwise.
Original entry on oeis.org
1, 1, 1, 1, 3, 3, 1, 5, 11, 11, 1, 7, 23, 45, 45, 1, 9, 39, 107, 197, 197, 1, 11, 59, 205, 509, 903, 903, 1, 13, 83, 347, 1061, 2473, 4279, 4279, 1, 15, 111, 541, 1949, 5483, 12235, 20793, 20793, 1, 17, 143, 795, 3285, 10717, 28435, 61463, 103049, 103049
Offset: 0
Johannes Fischer (Fischer(AT)informatik.uni-tuebingen.de), Sep 26 2008
First few rows of the triangle:
1
1, 1
1, 3, 3
1, 5, 11, 11
1, 7, 23, 45, 45
1, 9, 39, 107, 197, 197
1, 11, 59, 205, 509, 903, 903
Super-Catalan numbers or little Schroeder numbers (cf.
A001003) appear on the diagonal.
Generalizes the Catalan triangle (
A009766) and hence the ballot Numbers.
Cf.
A033877 for a similar triangle derived from the large Schroeder numbers (
A006318).
-
a144944 n k = a144944_tabl !! n !! k
a144944_row n = a144944_tabl !! n
a144944_tabl = iterate f [1] where
f us = vs ++ [last vs] where
vs = scanl1 (+) $ zipWith (+) us $ [0] ++ us
-- Reinhard Zumkeller, May 11 2013
-
t[, 0]=1; t[p, p_]:= t[p, p]= t[p, p-1]; t[p_, q_]:= t[p, q]= t[p, q-1] + t[p-1, q] + t[p-1, q-1]; Flatten[Table[ t[p, q], {p,0,6}, {q,0, p}]] (* Jean-François Alcover, Dec 19 2011 *)
-
@CachedFunction
def t(n,k):
if (k<0 or k>n): return 0
elif (k==0): return 1
elif (kG. C. Greubel, Mar 11 2023
A227504
Schroeder triangle sums: a(n) = A006603(n+1) - A006318(n+1).
Original entry on oeis.org
1, 4, 17, 74, 335, 1566, 7515, 36836, 183709, 929392, 4758477, 24611950, 128411643, 675051770, 3572165431, 19012868648, 101718917721, 546707554844, 2950563205705, 15983712882930, 86880753686279, 473710078493718, 2590187432233363, 14199709022579788
Offset: 1
-
A227504 := proc(n) local k, T; T := proc(n, k) option remember; if n=1 then return(1) fi; if kA227504(n), n = 1..24);
A227504 := proc(n): A006603(n+1) - A006318(n+1) end: A006603 := n -> add((k*add(binomial(n-k+2, i)*binomial(2*n-3*k-i+3, n-k+1), i= 0.. n-2*k+2)) / (n-k+2), k= 1.. n/2+1): A006318 := n -> add(binomial(n+k, n-k) * binomial(2*k, k)/(k+1), k=0..n): seq(A227504(n), n=1..24);
A378236
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(n,r) * binomial(n+2*r+k,n)/(n+2*r+k) for k > 0.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 4, 8, 0, 1, 6, 20, 44, 0, 1, 8, 36, 120, 280, 0, 1, 10, 56, 236, 800, 1936, 0, 1, 12, 80, 400, 1656, 5696, 14128, 0, 1, 14, 108, 620, 2960, 12192, 42416, 107088, 0, 1, 16, 140, 904, 4840, 22592, 92960, 326304, 834912, 0, 1, 18, 176, 1260, 7440, 38352, 176800, 727824, 2572992, 6652608, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, 12, ...
0, 8, 20, 36, 56, 80, 108, ...
0, 44, 120, 236, 400, 620, 904, ...
0, 280, 800, 1656, 2960, 4840, 7440, ...
0, 1936, 5696, 12192, 22592, 38352, 61248, ...
0, 14128, 42416, 92960, 176800, 308560, 507152, ...
-
T(n, k, t=1, u=2) = if(k==0, 0^n, k*sum(r=0, n, binomial(n, r)*binomial(t*n+u*r+k, n)/(t*n+u*r+k)));
matrix(7, 7, n, k, T(n-1, k-1))
A378240
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(n,r) * binomial(3*n+3*r+k,n)/(3*n+3*r+k) for k > 0.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 4, 18, 0, 1, 6, 40, 234, 0, 1, 8, 66, 540, 3570, 0, 1, 10, 96, 926, 8400, 59586, 0, 1, 12, 130, 1400, 14706, 141876, 1053570, 0, 1, 14, 168, 1970, 22720, 251622, 2528760, 19392490, 0, 1, 16, 210, 2644, 32690, 394152, 4524786, 46815116, 367677090, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, 12, ...
0, 18, 40, 66, 96, 130, 168, ...
0, 234, 540, 926, 1400, 1970, 2644, ...
0, 3570, 8400, 14706, 22720, 32690, 44880, ...
0, 59586, 141876, 251622, 394152, 575402, 801948, ...
0, 1053570, 2528760, 4524786, 7156128, 10553970, 14867704, ...
-
T(n, k, t=3, u=3) = if(k==0, 0^n, k*sum(r=0, n, binomial(n, r)*binomial(t*n+u*r+k, n)/(t*n+u*r+k)));
matrix(7, 7, n, k, T(n-1, k-1))
Comments