cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A128126 Numbers k such that 2^k == 18 (mod k).

Original entry on oeis.org

1, 2, 14, 35, 77, 98, 686, 1715, 5957, 18995, 26075, 43921, 49901, 52334, 86555, 102475, 221995, 250355, 1228283, 1493597, 4260059, 6469715, 10538675, 15374219, 19617187, 22731275, 53391779, 60432239, 68597795, 85672139, 175791077
Offset: 1

Views

Author

Alexander Adamchuk, Feb 15 2007

Keywords

Crossrefs

Cf. A015910, A036236, A050259 (numbers k such that 2^k == 3 (mod k)), A033981, A051447, A033982, A051446, A033983, A128121, A128122, A128123, A128124, A128125.

Programs

  • Magma
    [1,2,14] cat [n: n in [1..10^8] | Modexp(2, n, n) eq 18]; // Vincenzo Librandi, Apr 05 2019
  • Mathematica
    m = 18; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^6], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)
    Join[{1,2,14},Select[Range[86*10^6],PowerMod[2,#,#]==18&]] (* Harvey P. Dale, Feb 23 2025 *)
  • PARI
    isok(n) = Mod(2, n)^n == 18; \\ Michel Marcus, Oct 09 2018
    

Extensions

More terms from Joe Crump (joecr(AT)carolina.rr.com), Mar 04 2007
1, 2 and 14 added by N. J. A. Sloane, Apr 23 2007

A128125 Numbers k such that 2^k == 14 (mod k).

Original entry on oeis.org

1, 2, 3, 10, 1010, 61610, 469730, 2037190, 3820821, 9227438, 21728810, 24372562, 207034456857, 1957657325241, 2002159320610, 35169368880130, 36496347203230, 116800477091426
Offset: 1

Views

Author

Alexander Adamchuk, Feb 15 2007

Keywords

Comments

No other terms below 10^15. Some larger terms: 279283702428813463, 3075304070192893442, 21894426987819404424310, 4616079845508388554313022889, 82759461944940747300611642693066719359651817521, 446*(2^445-7)/1061319625781480182060453906975 (107 digits). - Max Alekseyev, Oct 03 2016

Crossrefs

Cf. A015910, A036236, A050259 (numbers k such that 2^k == 3 (mod k)), A033981, A051447, A033982, A051446, A033983, A128121, A128122, A128123, A128124, A128126.

Programs

  • Mathematica
    For[n=1, n<= 10^6, n++, If[PowerMod[2,n,n] == Mod[14,n], Print[n]]] (* Stefan Steinerberger, May 05 2007 *)
    m = 14; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^6], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)

Extensions

1, 2, 3 and 10 added by N. J. A. Sloane, Apr 23 2007
More terms from Stefan Steinerberger, May 05 2007
a(13) from Max Alekseyev, May 15 2011
a(14), a(16), a(17) from Max Alekseyev, Dec 16 2013
a(15), a(18) from Max Alekseyev, Oct 03 2016

A296370 Numbers m such that 2^m == 3/2 (mod m).

Original entry on oeis.org

1, 111481, 465793, 79036177, 1781269903307, 250369632905747, 708229497085909, 15673900819204067
Offset: 1

Views

Author

Max Alekseyev, Dec 11 2017

Keywords

Comments

Equivalently, 2^(m+1) == 3 (mod m).
Also, numbers m such that 2^(m+1) - 2 is a Fermat pseudoprime base 2, i.e., 2^(m+1) - 2 belongs to A015919 and A006935.
Some larger terms (may be not in order): 2338990834231272653581, 341569682872976768698011746141903924998969680637.

Crossrefs

Solutions to 2^m == k (mod m): this sequence (k=3/2), A187787 (k=1/2), A296369 (k=-1/2), A000079 (k=0), A006521 (k=-1), A015919 (k=2), A006517 (k=-2), A050259 (k=3), A015940 (k=-3), A015921 (k=4), A244673 (k=-4), A128121 (k=5), A245318 (k=-5), A128122 (k=6), A245728 (k=-6), A033981 (k=7), A240941 (k=-7), A015922 (k=8), A245319 (k=-8), A051447 (k=9), A240942 (k=-9), A128123 (k=10), A245594 (k=-10), A033982 (k=11), A128124 (k=12), A051446 (k=13), A128125 (k=14), A033983 (k=15), A015924 (k=16), A124974 (k=17), A128126 (k=18), A125000 (k=19), A015925 (k=2^5), A015926 (k=2^6), A015927 (k=2^7), A015929 (k=2^8), A015931 (k=2^9), A015932 (k=2^10), A015935 (k=2^11), A015937 (k=2^12)

Programs

  • Mathematica
    Select[Range[10^6], Divisible[2^(# + 1) - 3, #] &] (* Robert Price, Oct 11 2018 *)

Formula

a(n) = A296104(n) - 1.

A334634 Numbers m that divide 2^m + 11.

Original entry on oeis.org

1, 13, 16043199041, 91118493923, 28047837698634913
Offset: 1

Views

Author

Max Alekseyev, Sep 10 2020

Keywords

Comments

Equivalently, numbers m such that 2^m == -11 (mod m).
No other terms below 10^17.

Crossrefs

Solutions to 2^n == k (mod n): A296370 (k=3/2), A187787 (k=1/2), A296369 (k=-1/2), A000079 (k=0), A006521 (k=-1), A015919 (k=2), A006517 (k=-2), A050259 (k=3), A015940 (k=-3), A015921 (k=4), A244673 (k=-4), A128121 (k=5), A245318 (k=-5), A128122 (k=6), A245728 (k=-6), A033981 (k=7), A240941 (k=-7), A015922 (k=8), A245319 (k=-8), A051447 (k=9), A240942 (k=-9), A128123 (k=10), A245594 (k=-10), A033982 (k=11), this sequence (k=-11), A128124 (k=12), A051446 (k=13), A128125 (k=14), A033983 (k=15), A015924 (k=16), A124974 (k=17), A128126 (k=18), A125000 (k=19), A015925 (k=2^5), A015926 (k=2^6), A015927 (k=2^7), A015929 (k=2^8), A015931 (k=2^9), A015932 (k=2^10), A015935 (k=2^11), A015937 (k=2^12).

Extensions

a(5) from Sergey Paramonov, Oct 10 2021
Previous Showing 11-14 of 14 results.