cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A076318 Number of 6-colorable (i.e., chromatic number <= 6) simple graphs on n nodes.

Original entry on oeis.org

1, 2, 4, 11, 34, 156, 1043, 12338, 274541, 12000742, 1018595454
Offset: 1

Views

Author

Eric W. Weisstein, Oct 06 2002

Keywords

Crossrefs

Formula

a(n) = A076317(n) + A076282(n). - Andrew Howroyd, Dec 02 2018

Extensions

a(10)-a(11) from Andrew Howroyd, Dec 02 2018

A076319 Number of 7-colorable (i.e., chromatic number <= 7) simple graphs on n nodes.

Original entry on oeis.org

1, 2, 4, 11, 34, 156, 1044, 12345, 274659, 12004993, 1018989417
Offset: 1

Views

Author

Eric W. Weisstein, Oct 06 2002

Keywords

Crossrefs

Formula

a(n) = A076318(n) + A076283(n). - Andrew Howroyd, Dec 02 2018

Extensions

a(10)-a(11) from Andrew Howroyd, Dec 02 2018

A076320 Number of 8-colorable (i.e., chromatic number <= 8) simple graphs on n nodes.

Original entry on oeis.org

1, 2, 4, 11, 34, 156, 1044, 12346, 274667, 12005158, 1018997631
Offset: 1

Views

Author

Eric W. Weisstein, Oct 06 2002

Keywords

Crossrefs

Formula

a(n) = A076319(n) + A205567(n). - Andrew Howroyd, Dec 02 2018

Extensions

a(10)-a(11) from Andrew Howroyd, Dec 02 2018

A076321 Number of 9-colorable (i.e., chromatic number <= 9) simple graphs on n nodes.

Original entry on oeis.org

1, 2, 4, 11, 34, 156, 1044, 12346, 274668, 12005167, 1018997853
Offset: 1

Views

Author

Eric W. Weisstein, Oct 06 2002

Keywords

Crossrefs

Formula

a(n) = A076320(n) + A205568(n). - Andrew Howroyd, Dec 02 2018

Extensions

a(10)-a(11) from Andrew Howroyd, Dec 02 2018

A117279 Triangle read by rows: T(n,k) is number of labeled bipartite graphs with n nodes and k edges.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 3, 1, 6, 15, 16, 3, 1, 10, 45, 110, 140, 60, 10, 1, 15, 105, 435, 1125, 1701, 1200, 480, 105, 10, 1, 21, 210, 1295, 5355, 14952, 26572, 26670, 17535, 7840, 2331, 420, 35, 1, 28, 378, 3220, 19075, 81228, 246414, 507424, 666015, 620900, 431368
Offset: 0

Views

Author

Vladeta Jovovic, Jun 23 2007

Keywords

Examples

			Triangle begins:
  1;
  1;
  1,  1;
  1,  3,  3;
  1,  6, 15,  16,   3;
  1, 10, 45, 110, 140, 60, 10;
  ...
		

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.5.

Crossrefs

Row sums give A047864,
Columns k=1..5 are A000217(n-1), A050534, A053526, A053527, A053528.
The unlabeled version is A297877.

Programs

  • Mathematica
    nn=10;f[x_,y_]:=Sum[Sum[Binomial[n,k](1+y)^(k(n-k)),{k,0,n}]x^n/n!,{n,0,nn}];Map[Select[#,#>0&]&,Range[0,nn]!CoefficientList[Series[Exp[Log[f[x,y]]/2],{x,0,nn}],{x,y}]]//Grid (* Geoffrey Critzer, Sep 05 2013 *)
  • PARI
    T(n)={[Vecrev(p) | p<-Vec(serlaplace(sqrt(sum(k=0, n, exp(x*(1+y)^k + O(x*x^n))*x^k/k! ))))]}
    { my(A=T(6)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 10 2022

Formula

E.g.f.: sqrt(Sum_{n>=0} exp(x*(1+q)^n)*x^n/n!).

A008324 Number of simple regular bipartite graphs with 2n nodes.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 18, 40, 230, 4296, 431206, 162267272, 201636689771, 777816803942186, 9865957936943931964, 395886667549681689591841, 53716176608076643470621234239, 23524515269630339982914646821899537, 35682168849414944013547274452501768506834
Offset: 0

Views

Author

Keywords

Comments

First differs from A333732 at n = 12. - Andrew Howroyd, Apr 03 2020

Crossrefs

Row sums of A008327.

Extensions

a(0)=1 prepended and terms a(11) and beyond from Andrew Howroyd, Apr 03 2020

A165659 Numerators of A007504 divided by A033955, starting from the second term of A033955.

Original entry on oeis.org

2, 5, 5, 17, 28, 41, 58, 77, 50, 129, 16, 197, 119, 281, 164, 127, 440, 501, 568, 71, 356, 791, 46, 321, 530, 1161, 1264, 457, 1480, 1593, 344, 1851, 284, 2127, 2276, 809, 2584, 2747, 1457, 441, 1633, 1149, 3638, 3831, 1007, 4227, 4438
Offset: 1

Views

Author

Creighton Dement, Sep 24 2009

Keywords

Comments

Conjecture: with the exception of the second term, 2 <= a(n)/A165660(n) < 3.

Crossrefs

Programs

  • PARI
    a1(n)=sum(i=1, n, prime(i));
    b1(n)=sum(i=1, n, prime(n+1)%prime(i));
    a(n)=if(n<0, 0, numerator(a1(n)/b1(n)));
    for(n=1, 50, print1(a(n) ", "))

Extensions

Typo in definition corrected by Creighton Dement, Oct 09 2009

A165660 Denominators of A007504 divided by A033955, starting from the second term of A033955.

Original entry on oeis.org

1, 3, 2, 8, 13, 18, 27, 29, 23, 56, 7, 74, 44, 98, 67, 49, 171, 200, 217, 28, 137, 309, 17, 116, 209, 448, 471, 174, 571, 629, 137, 739, 111, 793, 853, 318, 997, 1002, 560, 164, 610, 446, 1419, 1466, 385, 1615, 1573, 1633, 1707, 1825, 946, 662, 2221, 781, 1198
Offset: 1

Views

Author

Creighton Dement, Sep 24 2009

Keywords

Comments

Conjecture: with the exception of the second term, 2 <= A165659(n)/a(n) < 3.

Crossrefs

Programs

  • PARI
    a1(n)=sum(i=1, n, prime(i)); b1(n)=sum(i=1, n, prime(n+1)%prime(i)); a(n)=if(n<0, 0, denominator(a1(n)/b1(n))); for(n=1, 50, print1(a(n) ", "))

Extensions

Terms corrected by Creighton Dement, Oct 03 2009
Removed a conjecture - R. J. Mathar, Oct 09 2009
Typo in definition corrected by Creighton Dement, Oct 09 2009

A297877 Triangle T(n,k) read by rows, giving number of bipartite graphs with n nodes (n >= 0) and k edges (0 <= k <= floor(n/2*n/2)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 3, 4, 1, 1, 1, 1, 2, 4, 7, 8, 6, 3, 2, 1, 1, 1, 2, 4, 8, 13, 19, 14, 13, 7, 4, 1, 1, 1, 1, 2, 4, 9, 16, 32, 45, 52, 48, 40, 24, 16, 7, 3, 2, 1, 1, 1, 2, 4, 9, 17, 38, 70, 120, 150, 179, 164, 143, 94, 63, 32, 19, 7, 4, 1, 1, 1, 1, 2, 4, 9, 18, 41, 85, 181, 324, 500, 659
Offset: 0

Views

Author

Juergen Will, Jan 07 2018

Keywords

Comments

The sum of the m-th row is the (m-1)-st member of A033995, number of bipartite graphs with n nodes.

Examples

			Triangle begins:
0:  1;
1:  1;
2:  1,  1;
3:  1,  1,  1;
4:  1,  1,  2,  2,  1;
5:  1,  1,  2,  3,  4,  1,  1;
6:  1,  1,  2,  4,  7,  8,  6,  3,  2,  1;
7:  1,  1,  2,  4,  8, 13, 19, 14, 13,  7,  4,  1,  1;
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, New York / London, 1973.

Crossrefs

Cf. A033995 (row sums).

A079571 Number of unlabeled, connected graphs on n vertices whose complements are bipartite.

Original entry on oeis.org

1, 1, 1, 2, 5, 11, 32, 85, 299, 1115, 5474, 32298, 251129, 2527706, 33985846, 611846933, 14864650916, 488222721984, 21712049275189, 1308300679611460, 106897965189674281, 11852113048215107812, 1784730721403509209204, 365323537513403184463262
Offset: 0

Views

Author

Jim Nastos, Jan 24 2003

Keywords

Comments

Equivalently, number of bipartite graphs whose complement is connected. The only bipartite graphs with disconnected complement are complete bipartite graphs. - Falk Hüffner, Jan 22 2016

Crossrefs

Programs

  • Mathematica
    A005142 = Import["https://oeis.org/A005142/b005142.txt", "Table"][[All, 2]];
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b];
    b = etr[A005142[[# + 1]]&];
    a[n_] := b[n] - Floor[n/2];
    a /@ Range[0, 50] (* Jean-François Alcover, Sep 17 2019 *)

Formula

a(n) = A033995(n) - floor(n/2).

Extensions

Corrected and extended using formula by Falk Hüffner, Jan 22 2016
a(0)=1 prepended and terms a(21) and beyond from Andrew Howroyd, Sep 05 2018
Previous Showing 11-20 of 24 results. Next