cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 352 results. Next

A064000 Unitary untouchable numbers of second kind: numbers n such that usigma(x) = n has no solution, where usigma(x) (A034448) is the sum of unitary divisors of x.

Original entry on oeis.org

2, 7, 11, 13, 15, 16, 19, 21, 22, 23, 25, 27, 29, 31, 34, 35, 37, 39, 41, 43, 45, 46, 47, 49, 51, 52, 53, 55, 57, 58, 59, 61, 63, 64, 66, 67, 69, 71, 73, 75, 76, 77, 79, 81, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 97, 99, 101, 103, 105, 106, 107, 109, 111, 113, 115, 116
Offset: 1

Views

Author

Labos Elemer and Felice Russo, Sep 05 2001

Keywords

Crossrefs

Programs

  • Mathematica
    usigma[n_] := Sum[ Boole[GCD[d, n/d] == 1]*d, {d, Divisors[n]}]; untouchableQ[n_] := (r = True; x = 1; While[x <= n, If[usigma[x] == n, r = False; Break[], x++]]; r); Select[Range[120], untouchableQ] (* Jean-François Alcover, Jan 03 2013 *)
  • PARI
    usigma(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i, 1]^f[i, 2]);}
    lista(kmax) = {my(v = vector(kmax), s); for(k = 1, kmax, s = usigma(k); if(s <= kmax, v[s]++)); for(k = 1, kmax, if(v[k] == 0, print1(k, ", ")))}; \\ Amiram Eldar, Jun 09 2024

Formula

Suppose usigma(x) = n. Then by definition usigma(x) = n > 1 for n > 1. Let x be a prime. Then usigma(x) = x+1 and so n = x+1. For x not prime, of course, x+1 < n. So in general x <= n-1.

Extensions

Edited by N. J. A. Sloane, May 04 2007

A285615 Numbers k such that usigma(k) >= 3*k, where usigma(k) = sum of unitary divisors of k (A034448).

Original entry on oeis.org

30030, 39270, 43890, 46410, 51870, 53130, 62790, 66990, 67830, 71610, 79170, 82110, 84630, 85470, 91770, 94710, 99330, 101010, 103530, 108570, 111930, 117390, 122430, 128310, 136290, 140910, 144690, 154770, 161070, 164010, 166530, 168630, 182490, 191730
Offset: 1

Views

Author

Amiram Eldar, Apr 22 2017

Keywords

Comments

Unitary 3-abundant numbers, correspond to 3-abundant numbers (A023197).
Similarly, the first numbers k such that usigma(k) >= 4*k are 200560490130, 7420738134810, 8222980095330, and 8624101075590. - Giovanni Resta, Apr 23 2017
The least odd term in this sequence is A070826(17) = 961380175077106319535 and the least odd number k such that usigma(k) >= 4*k is A070826(52) = 5.312...*10^95. - Amiram Eldar, Dec 26 2020

Crossrefs

Programs

  • Mathematica
    usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])]; Select[Range[100000], usigma[#] >= 3*# &]
  • PARI
    isok(k) = sumdivmult(k, d, if(gcd(d, k/d)==1, d)) >= 3*k; \\ Michel Marcus, Dec 26 2020

A348733 a(n) = gcd(A003959(n), A034448(n)), where A003959 is multiplicative with a(p^e) = (p+1)^e and A034448 (usigma) is multiplicative with a(p^e) = (p^e)+1.

Original entry on oeis.org

1, 3, 4, 1, 6, 12, 8, 9, 2, 18, 12, 4, 14, 24, 24, 1, 18, 6, 20, 6, 32, 36, 24, 36, 2, 42, 4, 8, 30, 72, 32, 3, 48, 54, 48, 2, 38, 60, 56, 54, 42, 96, 44, 12, 12, 72, 48, 4, 2, 6, 72, 14, 54, 12, 72, 72, 80, 90, 60, 24, 62, 96, 16, 1, 84, 144, 68, 18, 96, 144, 72, 18, 74, 114, 8, 20, 96, 168, 80, 6, 2, 126, 84, 32
Offset: 1

Views

Author

Antti Karttunen, Nov 05 2021

Keywords

Comments

This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 1444 = 2^2 * 19^2, where a(1444) = 10 != 1*2 = a(4)*a(361). See A348740 for the list of such positions.

Crossrefs

Cf. also A344695, A348047, A348503, A348946 for similar, almost multiplicative sequences.

Programs

  • Mathematica
    f1[p_, e_] := (p + 1)^e; f2[p_, e_] := p^e + 1; a[1] = 1; a[n_] := GCD[Times @@ f1 @@@ (f = FactorInteger[n]), Times @@ f2 @@@ f]; Array[a, 100] (* Amiram Eldar, Nov 05 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A034448(n) = { my(f = factor(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); };
    A348733(n) = gcd(A003959(n), A034448(n));

Formula

a(n) = gcd(A003959(n), A034448(n)).
a(n) = gcd(A003959(n), A348732(n)) = gcd(A034448(n), A348732(n)).
a(n) = A003959(n) / A348734(n) = A034448(n) / A348735(n).

A370898 Partial alternating sums of the sum of unitary divisors function (A034448).

Original entry on oeis.org

1, -2, 2, -3, 3, -9, -1, -10, 0, -18, -6, -26, -12, -36, -12, -29, -11, -41, -21, -51, -19, -55, -31, -67, -41, -83, -55, -95, -65, -137, -105, -138, -90, -144, -96, -146, -108, -168, -112, -166, -124, -220, -176, -236, -176, -248, -200, -268, -218, -296, -224, -294, -240, -324, -252, -324, -244, -334, -274, -394
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2024

Keywords

Crossrefs

Similar sequences: A068762, A068773, A307704, A357817, A362028.

Programs

  • Mathematica
    usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); usigma[1] = 1; Accumulate[Array[(-1)^(# + 1) * usigma[#] &, 100]]
  • PARI
    usigma(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i, 1]^f[i, 2]);}
    lista(kmax) = {my(s = 0); for(k = 1, kmax, s += (-1)^(k+1) * usigma(k); print1(s, ", "))};

Formula

a(n) = Sum_{k=1..n} (-1)^(k+1) * A034448(k).
a(n) = -c * n^2 + O(n * log(n)^(5/3)), where c = Pi^2/(84*zeta(3)) = 0.0977451984014... (Tóth, 2017).

A038843 Unitary superperfect numbers: numbers n such that usigma(usigma(n)) = 2*n, where usigma(n) is the sum of unitary divisors of n (A034448).

Original entry on oeis.org

2, 9, 165, 238, 1640, 4320, 10250, 10824, 13500, 23760, 58500, 66912, 425880, 520128, 873180, 931392, 1899744, 2129400, 2253888, 3276000, 4580064, 4668300, 13722800, 15459840, 40360320, 201801600, 439021440, 3809332800, 15359485680, 794436968640, 1407035080704
Offset: 1

Views

Author

Keywords

Comments

May be called (2,2)-unitary perfect numbers, analogous to (k,l)-perfect numbers.
Sitaramaiah and Subbarao found the first 22 terms. Also in the sequence is 12189313382400. - Amiram Eldar, Feb 27 2019

Crossrefs

Cf. A064012 (usigma(usigma(n)) = 3n).

Programs

  • Mathematica
    usigma[n_] := Times @@ (Apply[ Power, FactorInteger[n], {1}] + 1); n = 1; A038843 = {}; While[n < 10^7, If[ usigma[ usigma[n] ] == 2n, Print[n]; AppendTo[ A038843, n] ]; n++]; A038843 (* Jean-François Alcover, Dec 07 2011 *)
  • PARI
    {usigma(n,s=1,fac,i)= fac=factor(n); for(i=1,matsize(fac)[1], s=s*(1+fac[i,1]^fac[i,2]) ); return(s);}
    for(n=1,10^7, if(usigma(usigma(n))==2*n, print1(n, ", ")))

Extensions

Corrected by Jason Earls, Aug 25 2001
More terms from Jud McCranie, Oct 28 2001
Offset corrected and a(28) from Donovan Johnson, Jul 23 2012
Name edited and a(29) from Amiram Eldar, Feb 27 2019
a(30)-a(31) from Giovanni Resta, Mar 08 2019

A098189 Sum of unitary divisors minus Euler phi: a(n) = A034448(n) - A000010(n).

Original entry on oeis.org

0, 2, 2, 3, 2, 10, 2, 5, 4, 14, 2, 16, 2, 18, 16, 9, 2, 24, 2, 22, 20, 26, 2, 28, 6, 30, 10, 28, 2, 64, 2, 17, 28, 38, 24, 38, 2, 42, 32, 38, 2, 84, 2, 40, 36, 50, 2, 52, 8, 58, 40, 46, 2, 66, 32, 48, 44, 62, 2, 104, 2, 66, 44, 33, 36, 124, 2, 58, 52, 120, 2, 66, 2, 78, 64, 64, 36, 144, 2
Offset: 1

Views

Author

Labos Elemer, Sep 03 2004

Keywords

Examples

			a(1) = 1 - 1 = 0.
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, # &, CoprimeQ[#, n/#] &] - EulerPhi@ n, {n, 120}] (* Michael De Vlieger, Mar 01 2017 *)
  • PARI
    a(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d)) - eulerphi(n); \\ Michel Marcus, Feb 25 2014
    
  • PARI
    a(n)=my(f=factor(n)); prod(k=1, #f[, 2], f[k, 1]^f[k, 2]+1) - eulerphi(f) \\ Charles R Greathouse IV, Mar 01 2017

Formula

a(n) > A063919(n) if n > 1.
a(A000040(k)) = 2.
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/(12*zeta(3)) - 3/Pi^2 = 0.380252... . - Amiram Eldar, Aug 21 2023

Extensions

Edited by R. J. Mathar, Mar 02 2009

A302570 Unitary barely abundant numbers: unitary abundant numbers k such that usigma(k)/k < usigma(m)/m for all unitary abundant numbers m < k, where usigma(k) is the sum of the unitary divisors of k (A034448).

Original entry on oeis.org

30, 42, 66, 70, 222, 246, 258, 282, 294, 318, 354, 366, 402, 426, 438, 474, 498, 534, 582, 606, 618, 642, 654, 678, 726, 750, 762, 786, 822, 834, 894, 906, 942, 978, 1002, 1014, 1038, 1074, 1086, 1146, 1158, 1182, 1194, 1266, 1338, 1362, 1374, 1398, 1434
Offset: 1

Views

Author

Amiram Eldar, Apr 10 2018

Keywords

Comments

The unitary version of A071927.

Examples

			The values of usigma(k)/k are 2.4, 2.285..., 2.181..., 2.057..., 2.054...
		

Crossrefs

Programs

  • Mathematica
    usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])]; seq = {}; r = 3; Do[s = usigma[n]/n; If[s > 2 && s < r, AppendTo[seq, n]; r = s], {n, 1, 10000}]; seq

A328328 Unitary admirable numbers: numbers k such that there is a proper unitary divisor d of k such that usigma(k) - 2d = 2k, where usigma is the sum of unitary divisors function (A034448).

Original entry on oeis.org

30, 42, 66, 70, 78, 102, 114, 138, 150, 174, 186, 222, 246, 258, 282, 294, 318, 354, 366, 402, 420, 426, 438, 474, 498, 534, 582, 606, 618, 630, 642, 654, 660, 678, 726, 750, 762, 780, 786, 822, 834, 840, 894, 906, 942, 978, 990, 1002, 1014, 1020, 1038, 1074, 1086
Offset: 1

Views

Author

Amiram Eldar, Oct 12 2019

Keywords

Comments

Differs from A302574(n) at n >= 30.
Equivalently, numbers that equal to the sum of their proper unitary divisors, with one of them taken with a minus sign.
The unitary version of A111592.
The squarefree terms are also admirable numbers (A111592). The nonsquarefree terms are 150, 294, 420, 630, 660, 726, 750, 780, 840, 990, ...
The unitary abundant numbers (A034683) that are not unitary admirable numbers are: 210, 330, 390, 462, 510, 546, 570, 690, 714, 770, 798, 858, 870, 910, 924, 930, 966, ...

Examples

			150 is in the sequence since 150 = 1 + 2 + 3 - 6 + 25 + 50 + 75 is the sum of its proper unitary divisors with one of them, 6, taken with a minus sign.
		

Crossrefs

Subsequence of A034683 and A290466.

Programs

  • Mathematica
    usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); aQ[n_] := (ab = usigma[n] - 2n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2] && CoprimeQ[2*n/ab, ab/2]; Select[Range[1086], aQ]

A348503 a(n) = gcd(sigma(n), usigma(n)), where sigma is the sum of divisors function, A000203, and usigma is the unitary sigma, A034448.

Original entry on oeis.org

1, 3, 4, 1, 6, 12, 8, 3, 1, 18, 12, 4, 14, 24, 24, 1, 18, 3, 20, 6, 32, 36, 24, 12, 1, 42, 4, 8, 30, 72, 32, 3, 48, 54, 48, 1, 38, 60, 56, 18, 42, 96, 44, 12, 6, 72, 48, 4, 1, 3, 72, 14, 54, 12, 72, 24, 80, 90, 60, 24, 62, 96, 8, 1, 84, 144, 68, 18, 96, 144, 72, 15, 74, 114, 4, 20, 96, 168, 80, 6, 1, 126, 84, 32
Offset: 1

Views

Author

Antti Karttunen, Oct 29 2021

Keywords

Comments

This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 72 = 8*9, where a(72) = 15 != 3*1 = a(8)*a(9).

Crossrefs

Differs from A344695 for the first time at n=72, where a(72) = 15, while A344695(72) = 3.
Differs from A348047 for the first time at n=27, where a(27) = 4, while A348047(27) = 8.

Programs

  • Mathematica
    f1[p_, e_] := p^e + 1; f2[p_, e_] := (p^(e + 1) - 1)/(p - 1); a[1] = 1; a[n_] := GCD[Times @@ f1 @@@ (fct = FactorInteger[n]), Times @@ f2 @@@ fct]; Array[a, 100] (* Amiram Eldar, Oct 29 2021 *)
  • PARI
    A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
    A348503(n) = gcd(sigma(n), A034448(n));

Formula

a(n) = gcd(A000203(n), A034448(n)).
a(n) = gcd(A000203(n), A048146(n)) = gcd(A034448(n), A048146(n)).
a(n) = A000203(n) / A348504(n) = A034448(n) / A348505(n).

A348946 a(n) = gcd(sigma(n), A348944(n)), where A348944 is the arithmetic mean of A003959 and A034448, and sigma is the sum of divisors function.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 3, 13, 18, 12, 28, 14, 24, 24, 1, 18, 39, 20, 42, 32, 36, 24, 12, 31, 42, 2, 56, 30, 72, 32, 3, 48, 54, 48, 1, 38, 60, 56, 18, 42, 96, 44, 84, 78, 72, 48, 4, 57, 93, 72, 98, 54, 6, 72, 24, 80, 90, 60, 168, 62, 96, 104, 1, 84, 144, 68, 126, 96, 144, 72, 3, 74, 114, 124, 140, 96, 168, 80, 6, 1, 126
Offset: 1

Views

Author

Antti Karttunen, Nov 05 2021

Keywords

Comments

This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 36 = 2^2 * 3^2, where a(36) = 1 <> 91 = 7*13 = a(4)*a(9).

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := (p^(e + 1) - 1)/(p - 1); f2[p_, e_] := (p + 1)^e; f3[p_, e_] := p^e + 1; a[1] = 1; a[n_] := GCD[Times @@ f1 @@@ (f = FactorInteger[n]), (Times @@ f2 @@@ f + Times @@ f3 @@@ f)/2]; Array[a, 100] (* Amiram Eldar, Nov 05 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A034448(n) = { my(f = factor(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); };
    A348946(n) = gcd(sigma(n), ((1/2)*(A003959(n)+A034448(n))));

Formula

a(n) = gcd(A000203(n), A348944(n)).
a(n) = gcd(A000203(n), A348945(n)) = gcd(A348944(n), A348945(n));
a(n) = A348944(n) / A348947(n) = A000203(n) / A348948(n).
Previous Showing 11-20 of 352 results. Next