cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A141809 Irregular table: Row n (of A001221(n) terms, for n>=2) consists of the largest powers that divides n of each distinct prime that divides n. Terms are arranged by the size of the distinct primes. Row 1 = (1).

Original entry on oeis.org

1, 2, 3, 4, 5, 2, 3, 7, 8, 9, 2, 5, 11, 4, 3, 13, 2, 7, 3, 5, 16, 17, 2, 9, 19, 4, 5, 3, 7, 2, 11, 23, 8, 3, 25, 2, 13, 27, 4, 7, 29, 2, 3, 5, 31, 32, 3, 11, 2, 17, 5, 7, 4, 9, 37, 2, 19, 3, 13, 8, 5, 41, 2, 3, 7, 43, 4, 11, 9, 5, 2, 23, 47, 16, 3, 49, 2, 25, 3, 17, 4, 13, 53, 2, 27, 5, 11, 8, 7, 3
Offset: 1

Views

Author

Leroy Quet, Jul 07 2008

Keywords

Comments

In other words, except for row 1, row n contains the unitary prime power divisors of n, sorted by the prime. - Franklin T. Adams-Watters, May 05 2011
A034684(n) = smallest term of n-th row; A028233(n) = T(n,1); A053585(n) = T(n,A001221(n)); A008475(n) = sum of n-th row for n > 1. - Reinhard Zumkeller, Jan 29 2013

Examples

			60 has the prime factorization 2^2 * 3^1 * 5^1, so row 60 is (4,3,5).
From _M. F. Hasler_, Oct 12 2018: (Start)
The table starts:
    n : largest prime powers dividing n
    1 :  1
    2 :  2
    3 :  3
    4 :  4
    5 :  5
    6 :  2, 3
    7 :  7
    8 :  8
    9 :  9
   10 :  2, 5
   11 : 11
   12 :  4, 3
   etc. (End)
		

Crossrefs

A027748, A124010 are used in a formula defining this sequence.
Cf. A001221 (row lengths), A008475 (row sums), A028233 (column 1), A034684 (row minima), A053585 (right edge).

Programs

  • Haskell
    a141809 n k = a141809_row n !! (k-1)
    a141809_row 1 = [1]
    a141809_row n = zipWith (^) (a027748_row n) (a124010_row n)
    a141809_tabf = map a141809_row [1..]
    -- Reinhard Zumkeller, Mar 18 2012
    
  • Mathematica
    f[{x_, y_}] := x^y; Table[Map[f, FactorInteger[n]], {n, 1, 50}] // Grid (* Geoffrey Critzer, Apr 03 2015 *)
  • PARI
    A141809_row(n)=if(n>1, [f[1]^f[2]|f<-factor(n)~], [1]) \\ M. F. Hasler, Oct 12 2018, updated Aug 19 2022

Formula

T(n,k) = A027748(n,k)^A124010(n,k) for n > 1, k = 1..A001221(n). - Reinhard Zumkeller, Mar 15 2012

A289271 A bijective binary representation of the prime factorization of a number, shown in decimal (see Comments for precise definition).

Original entry on oeis.org

0, 1, 2, 4, 8, 3, 16, 32, 64, 5, 128, 6, 256, 9, 10, 512, 1024, 17, 2048, 12, 18, 33, 4096, 34, 8192, 65, 16384, 20, 32768, 7, 65536, 131072, 66, 129, 24, 36, 262144, 257, 130, 40, 524288, 11, 1048576, 68, 72, 513, 2097152, 258, 4194304, 1025, 514, 132
Offset: 1

Views

Author

Rémy Sigrist, Jun 30 2017

Keywords

Comments

For n > 0, with prime factorization Product_{i=1..k} p_i ^ e_i (all p_i distinct and all e_i > 0):
- let S_n = A000961 \ { p_i ^ (e_i + j) with i=1..k and j > 0 },
- a(n) = Sum_{i=1..k} 2^#{ s in S_n with 1 < s < p_i ^ e_i }.
In an informal way, we encode the prime powers > 1 that are unitary divisors of n as 1's in binary, while discarding the 0's corresponding to their "proper" multiples.
a(A002110(n)) = 2^n-1 for any n >= 0.
a(A000961(n+1)) = 2^(n-1) for any n > 0.
A000120(a(n)) = A001221(n) for any n > 0 (each prime divisor p of n (alongside the p-adic valuation of n) is encoded as a single 1 bit in the base-2 representation of a(n)).
A000961(2+A007814(a(n))) = A034684(n) for any n > 1 (the least significant bit of a(n) encodes the smallest unitary divisor of n that is larger than 1).
This sequence establishes a bijection between the positive numbers and the nonnegative numbers; see A289272 for the inverse of this sequence.
The numbers 4, 36, 40 and 532 equal their image; are there other such numbers?
This sequence has connections with A034729 (which encodes the divisors of a number, and is not surjective) and A087207 (which encodes the prime divisors of a number, and is not injective).

Examples

			For n = 204 = 2^2 * 3 * 17:
- S_204 = A000961 \ { 2^3, 2^4, ..., 3^2, ... }
        = { 1, 2, 3, 4, 5, 7, 11, 13, 17, ... },
- a(204) = 2^#{ 2, 3 } + 2^#{ 2 } + 2^#{ 2, 3, 4, 5, 7, 11, 13 }
         = 2^2 + 2^1 + 2^7
         = 134.
See also the illustration of the first terms in Links section.
		

Crossrefs

Cf. also A156552, A052331 for similar constructions.

Programs

  • PARI
    See Links section.
    
  • PARI
    A289271(n) = { my(f = factor(n), pps = vecsort(vector(#f~, i, f[i, 1]^f[i, 2])), s=0, x=1, pp=1, k=-1); for(i=1,#f~, while(pp < pps[i], pp++; while(!isprimepower(pp)||(gcd(pp,x)>1), pp++); k++); s += 2^k; x *= pp); (s); }; \\ Antti Karttunen, Jan 01 2019

A289272 Inverse to A289271.

Original entry on oeis.org

1, 2, 3, 6, 4, 10, 12, 30, 5, 14, 15, 42, 20, 70, 60, 210, 7, 18, 21, 66, 28, 90, 84, 330, 35, 126, 105, 462, 140, 630, 420, 2310, 8, 22, 24, 78, 36, 110, 132, 390, 40, 154, 120, 546, 180, 770, 660, 2730, 56, 198, 168, 858, 252, 990, 924, 4290, 280, 1386, 840
Offset: 0

Views

Author

Rémy Sigrist, Jun 30 2017

Keywords

Comments

a(2^n-1) = A002110(n) for any n >= 0.
a(2^(n-1)) = A000961(n+1) for any n > 0.
A001221(a(n)) = A000120(n) for any n >= 0.
From Antti Karttunen, Jan 01 2019: (Start)
A034684(a(n)) = A000961(1+A001511(n)) for any n >= 1. (See also Rémy Sigrist's comment in A289271).
This sequence can be regarded also as an irregular triangle with rows of lengths 1, 1, 2, 4, 8, 16, ..., that is, it can be represented as a binary tree, where each left hand child contains A322991(k), and each right hand child contains A322992(k), when their parent contains k:
1
|
...................2...................
3 6
4......../ \........10 12......../ \........30
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
5 14 15 42 20 70 60 210
7 18 21 66 28 90 84 330 35 126 105 462 140 630 420 2310
etc.
The leftmost edge is A000961, the next lefmost is A278568 (after 2: 6, 10, 14, 18, ...), the righmost edge is A002110, the next rightmost A088860 but with 3 instead of 4.
Compare also to trees like A005940 (A163511) and A052330.
(End)

Examples

			A289271(1) = 0, hence a(0) = 1.
A289271(2) = 1, hence a(1) = 2.
A289271(3) = 2, hence a(2) = 3.
A289271(4) = 4, hence a(4) = 4.
A289271(5) = 8, hence a(8) = 5.
A289271(6) = 3, hence a(3) = 6.
A289271(7) = 16, hence a(16) = 7.
A289271(8) = 32, hence a(32) = 8.
A289271(9) = 64, hence a(64) = 9.
A289271(10) = 5, hence a(5) = 10.
		

Crossrefs

Programs

  • PARI
    See Links section.
    
  • PARI
    A289272(n) = { my(m=1, pp=1); while(n>0, pp++; while(!isprimepower(pp)||(gcd(pp,m)>1), pp++); if(n%2, m *= pp); n >>=1); (m); }; \\ Antti Karttunen, Jan 01 2019

A067695 Smallest prime factor with minimum exponent in canonical prime factorization of n, a(1)=1.

Original entry on oeis.org

1, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 3, 13, 2, 3, 2, 17, 2, 19, 5, 3, 2, 23, 3, 5, 2, 3, 7, 29, 2, 31, 2, 3, 2, 5, 2, 37, 2, 3, 5, 41, 2, 43, 11, 5, 2, 47, 3, 7, 2, 3, 13, 53, 2, 5, 7, 3, 2, 59, 3, 61, 2, 7, 2, 5, 2, 67, 17, 3, 2, 71, 3, 73, 2, 3, 19, 7, 2, 79, 5
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 23 2002

Keywords

Examples

			a(12) = a(2^2 * 3^1) = 3, but A020639(12) = 2;
a(36) = a(2^2 * 3^2) = 2 = A020639(36).
		

Crossrefs

Programs

  • Maple
    a:= n-> `if`(n=1, 1, (l-> (m-> min(map(i-> i[1], select(y->
          y[2]=m, l))))(min(map(x-> x[2], l))))(ifactors(n)[2])):
    seq(a(n), n=1..80);  # Alois P. Heinz, Jan 25 2023
  • Mathematica
    a[n_] := Module[{f = FactorInteger[n], p, e}, Min[Select[f, Last[#] == Min[f[[;;, 2]]] &][[;;, 1]]]]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Sep 08 2024 *)
  • PARI
    a(n) = if (n==1, 1, my(f=factor(n), i=vecmin(f[,2])); f[vecmin(select(x->(x==i), f[,2], 1)), 1]); \\ Michel Marcus, Jul 17 2023
  • Python
    from sympy import factorint
    def A067695(n):
        if n == 1: return 1
        f, g = map(tuple,zip(*sorted(factorint(n).items())))
        return f[g.index(min(g))] # Chai Wah Wu, Feb 07 2023
    

A117180 Lowest prime-power dividing the n-th nonsquarefree positive integer.

Original entry on oeis.org

4, 8, 9, 3, 16, 2, 4, 3, 25, 27, 4, 32, 4, 5, 4, 5, 3, 49, 2, 4, 2, 7, 3, 7, 64, 4, 8, 3, 4, 5, 81, 3, 8, 2, 4, 3, 2, 9, 4, 8, 4, 7, 4, 9, 3, 121, 4, 125, 2, 128, 3, 5, 8, 4, 9, 3, 4, 2, 8, 9, 3, 5, 2, 4, 3, 169, 9, 4, 7, 11, 4, 8, 4, 7, 3, 4, 2, 8, 3, 9, 13, 4, 8, 4, 7, 9, 3, 8, 2, 4, 3, 2, 243, 4, 5, 8
Offset: 1

Views

Author

Leroy Quet, Mar 01 2006

Keywords

Examples

			12, the 4th nonsquarefree positive integer, is 2^2 * 3. 3 is the smallest prime power dividing 12. So a(4) = 3.
		

Crossrefs

Programs

  • Maple
    A013929 := proc(nmax) local a,n ; a := [] ; n :=1 ; while nops(a) < nmax do if not numtheory[issqrfree](n) then a := [op(a),n] ; fi ; n := n+1 ; od ; a ; end : A034684 := proc(n) local ifs; if n = 1 then 1 ; else ifs := ifactors(n)[2] ; seq(op(1,op(i,ifs))^op(2,op(i,ifs)), i=1..nops(ifs)) ; min(%) ; fi ; end: a013929 := A013929(200) : for n from 1 to nops(a013929) do printf("%d, ",A034684(op(n,a013929))) ; od ; # R. J. Mathar, May 10 2007
  • Mathematica
    s[n_] := Min @@ Power @@@ FactorInteger[n]; s /@ Select[Range[200], !SquareFreeQ[#] &] (* Amiram Eldar, Feb 11 2021 *)

Formula

a(n) = A034684(A013929(n)).

Extensions

More terms from R. J. Mathar, May 10 2007

A117182 a(n) = A117181(n) - A117180(n).

Original entry on oeis.org

0, 0, 0, 1, 0, 7, 1, 5, 0, 0, 3, 0, 5, 3, 7, 4, 13, 0, 23, 9, 25, 1, 2, 2, 0, 13, 1, 22, 15, 11, 0, 4, 3, 7, 19, 29, 47, 2, 21, 5, 23, 9, 25, 4, 5, 0, 27, 0, 7, 0, 8, 22, 9, 3, 7, 46, 33, 23, 11, 8, 10, 27, 79, 37, 5, 0, 10, 39, 18, 5, 5, 15, 43, 20, 61, 45, 9, 17, 14, 14, 3, 49, 19, 7, 25, 16, 16
Offset: 1

Views

Author

Leroy Quet, Mar 01 2006

Keywords

Examples

			12, the 4th nonsquarefree positive integer, is 2^2 * 3. 2^2 = 4 is the largest prime power dividing 12. 3 is the smallest prime power dividing 12. So a(4) = 4 - 3 = 1.
		

Crossrefs

Programs

  • Maple
    A013929 := proc(nmax) local a,n ; a := [] ; n :=1 ; while nops(a) < nmax do if not numtheory[issqrfree](n) then a := [op(a),n] ; fi ; n := n+1 ; od ; a ; end :
    A034699 := proc(n) local ifs,res; if n = 1 then 1 ; else ifs := ifactors(n)[2] ; seq(op(1,op(i,ifs))^op(2,op(i,ifs)), i=1..nops(ifs)) ; max(%) ; fi ; end:
    A034684 := proc(n) local ifs,res; if n = 1 then 1 ; else ifs := ifactors(n)[2] ; seq(op(1,op(i,ifs))^op(2,op(i,ifs)), i=1..nops(ifs)) ; min(%) ; fi ; end:
    a013929 := A013929(200) : for n from 1 to nops(a013929) do printf("%d, ",A034699(op(n,a013929))-A034684(op(n,a013929))) ; od ; # R. J. Mathar, May 10 2007
  • Mathematica
    s[n_] := Differences[MinMax[Power @@@ FactorInteger[n]]][[1]]; s /@ Select[Range[250], !SquareFreeQ[#] &] (* Amiram Eldar, Feb 11 2021 *)

Extensions

More terms from R. J. Mathar, May 10 2007

A126855 Numbers k such that, if k = product{p|k} p^c(k,p), each c(k,p) is a positive integer and each p is a distinct prime, then the smallest prime-power p^c(k, p) is not a power of the smallest prime dividing k.

Original entry on oeis.org

12, 24, 40, 45, 48, 56, 60, 63, 80, 84, 96, 112, 120, 132, 135, 144, 156, 160, 168, 175, 176, 189, 192, 204, 208, 224, 228, 240, 264, 275, 276, 280, 288, 297, 300, 312, 315, 320, 325, 336, 348, 351, 352, 360, 372, 384, 405, 408, 416, 420, 425, 440, 444, 448
Offset: 1

Views

Author

Leroy Quet, Mar 23 2007

Keywords

Comments

The numbers of terms not exceeding 10^k, for k=1,2,...., are 0, 11, 128, 1245, 12474, 124052, 1240434, 12398594, 123976845, 1239840735, ... Apparently this sequence has an asymptotic density 0.1239... - Amiram Eldar, Mar 20 2021

Examples

			3600 is included because 3600 = 2^4 * 3^2 * 5^2 and the smallest prime-power (which is largest prime-power of its prime to divide 3600), 3^2 = 9, is not a power of the smallest prime to divide 3600, which is 2.
		

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Block[{p = Power @@@ FactorInteger[n]},First[p] != Min[p]];Select[Range[460], fQ] (* Ray Chandler, Mar 25 2007 *)

Extensions

Extended by Ray Chandler, Mar 25 2007

A139084 a(n) = (smallest prime-power among the largest powers dividing n of each prime dividing n) * (smallest prime-power among the largest powers dividing (n+1) of each prime dividing (n+1)).

Original entry on oeis.org

2, 6, 12, 20, 10, 14, 56, 72, 18, 22, 33, 39, 26, 6, 48, 272, 34, 38, 76, 12, 6, 46, 69, 75, 50, 54, 108, 116, 58, 62, 992, 96, 6, 10, 20, 148, 74, 6, 15, 205, 82, 86, 172, 20, 10, 94, 141, 147, 98, 6, 12, 212, 106, 10, 35, 21, 6, 118, 177, 183, 122, 14, 448, 320, 10, 134
Offset: 1

Views

Author

Leroy Quet, Apr 07 2008

Keywords

Comments

The largest powers dividing 44 of each prime dividing 44 are 2^2 and 11^1. The least of these is 2^2 =4. The largest powers dividing 45 of each prime dividing 45 are 3^2 and 5^1. The least of these is 5^1 = 5. So a(44) = 4 * 5 = 20.

Crossrefs

Programs

  • Mathematica
    f[{a_,b_}]:=a^b;a[n_]:=Min[f/@FactorInteger[n]]*Min[f/@FactorInteger[n+1]];Array[a,66] (* James C. McMahon, Jun 28 2025 *)
  • PARI
    minpp(n)=local(m,r,pp);if(n==1,1,m=factor(n);r=m[1,1]^m[1,2];for(i=2,matsize(m)[1],pp=m[i,1]^m[i,2];if(pp
    				

Formula

a(n) = A034684(n) * A034684(n+1). [From Franklin T. Adams-Watters, Apr 09 2009]

Extensions

More terms from Franklin T. Adams-Watters, Apr 09 2009

A100574 If n = product{p|n, p=prime} p^b(p,n), where each b(p,n) is a positive integer and the product is over distinct prime divisors of n, a(n) = difference between the maximum p^b(p,n) and minimum p^b(p,n).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 5, 2, 0, 0, 7, 0, 1, 4, 9, 0, 5, 0, 11, 0, 3, 0, 3, 0, 0, 8, 15, 2, 5, 0, 17, 10, 3, 0, 5, 0, 7, 4, 21, 0, 13, 0, 23, 14, 9, 0, 25, 6, 1, 16, 27, 0, 2, 0, 29, 2, 0, 8, 9, 0, 13, 20, 5, 0, 1, 0, 35, 22, 15, 4, 11, 0, 11, 0, 39, 0, 4, 12, 41, 26, 3, 0, 7, 6, 19, 28
Offset: 1

Views

Author

Leroy Quet, Jan 02 2005

Keywords

Comments

a(n)=0 iff n a prime or a power of a prime. - Robert G. Wilson v, Jan 10 2005

Examples

			For 24 = 2^3 *3, 2^3 and 3 are separated by 5, so a(30) = 5.
		

Crossrefs

Programs

  • Mathematica
    pf[n_] := Block[{pb = Flatten[ Table[ #[[1]]^#[[2]], {1}] & /@ FactorInteger[n]]}, Max[pb] - Min[pb]]; Table[ pf[n], {n, 2, 100}] (* Robert G. Wilson v, Jan 10 2005 *)
  • PARI
    A100574(n) = if(1==n,0,my(f=factor(n), v = vector(#f[, 1], i, f[i, 1]^f[i, 2])); vecmax(v)-vecmin(v)); \\ Antti Karttunen, Aug 06 2018

Formula

a(n) = A034699(n) - A034684(n). - Antti Karttunen, Aug 06 2018

Extensions

More terms from Robert G. Wilson v, Jan 10 2005

A139083 a(n) = (smallest prime-power among the largest powers of each prime dividing n) + (smallest prime-power among the largest powers of each prime dividing (n+1)).

Original entry on oeis.org

3, 5, 7, 9, 7, 9, 15, 17, 11, 13, 14, 16, 15, 5, 19, 33, 19, 21, 23, 7, 5, 25, 26, 28, 27, 29, 31, 33, 31, 33, 63, 35, 5, 7, 9, 41, 39, 5, 8, 46, 43, 45, 47, 9, 7, 49, 50, 52, 51, 5, 7, 57, 55, 7, 12, 10, 5, 61, 62, 64, 63, 9, 71, 69, 7, 69, 71, 7, 5, 73, 79, 81, 75, 5, 7, 11, 9, 81
Offset: 1

Views

Author

Leroy Quet, Apr 07 2008

Keywords

Comments

The largest powers of each prime dividing 44 are 2^2 and 11^1. The least of these is 2^2 =4. The largest powers of each prime dividing 45 are 3^2 and 5^1. The least of these is 5^1 = 5. So a(44) = 4 + 5 = 9.

Crossrefs

Programs

  • Mathematica
    f[{a_,b_}]:=a^b;a[n_]:=Min[f/@FactorInteger[n]]+Min[f/@FactorInteger[n+1]];Array[a,78] (* James C. McMahon, Jun 28 2025 *)
  • PARI
    minpp(n)=local(m,r,pp);if(n==1,1,m=factor(n);r=m[1,1]^m[1,2];for(i=2,matsize(m)[1],pp=m[i,1]^m[i,2];if(pp
    				

Formula

a(n) = A034684(n) + A034684(n+1). [Franklin T. Adams-Watters, Apr 09 2009]

Extensions

More terms from Franklin T. Adams-Watters, Apr 09 2009
Previous Showing 11-20 of 26 results. Next