cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A106756 Primes with digit sum = 14.

Original entry on oeis.org

59, 149, 167, 239, 257, 293, 347, 383, 419, 491, 509, 563, 617, 653, 743, 761, 941, 1049, 1193, 1229, 1283, 1319, 1373, 1409, 1427, 1481, 1553, 1571, 1607, 1733, 1823, 1913, 1931, 2039, 2129, 2237, 2273, 2309, 2381, 2417, 2543, 2633, 2741, 2903, 3083
Offset: 1

Views

Author

Zak Seidov, May 16 2005

Keywords

Comments

Or prime numbers in A114527. - Zak Seidov, May 21 2006

Crossrefs

Cf. A000040 (primes), A007953 (sum of digits), A235225 (digit sum = 14).
Cf. A062339 (same for digit sum s = 4), A106755 (s = 13), A106757 (s = 16), and others listed in A244918 (s = 68).

Programs

  • Magma
    [p: p in PrimesUpTo(4000) | &+Intseq(p) eq 14]; // Vincenzo Librandi, Jul 08 2014
    
  • Mathematica
    Select[Prime[Range[10000]], Total[IntegerDigits[#]]==14 &] (* Vincenzo Librandi, Jul 08 2014 *)
  • PARI
    select( {is_A106756(n)= sumdigits(n)==14 && isprime(n)}, primes([1, 3333])) \\ M. F. Hasler, Mar 09 2022

Formula

Intersection of A000040 (primes) and A235225 (digit sum = 14); also equals { p in A000040 | A007953(p) = 14 }. - M. F. Hasler, Mar 09 2022

A134681 Number of digits of all the divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 5, 3, 7, 3, 5, 5, 6, 3, 7, 3, 8, 5, 6, 3, 10, 4, 6, 5, 8, 3, 11, 3, 8, 6, 6, 5, 12, 3, 6, 6, 11, 3, 11, 3, 9, 8, 6, 3, 14, 4, 9, 6, 9, 3, 11, 6, 11, 6, 6, 3, 18, 3, 6, 8, 10, 6, 12, 3, 9, 6, 12, 3, 17, 3, 6, 9, 9, 6, 12, 3, 15, 7, 6, 3, 18, 6, 6, 6, 12, 3, 18, 6, 9, 6, 6, 6, 18
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 06 2007

Keywords

Comments

Also number of digits of the concatenation of all divisors of n (A037278). - Jaroslav Krizek, Jun 15 2011

Crossrefs

Programs

  • Maple
    A134681 := proc(n)
        add(A055642(d),d=numtheory[divisors](n)) ;
    end proc:
    seq(A134681(n),n=1..80) ; # R. J. Mathar, Feb 21 2025
  • Mathematica
    Array[Total[IntegerLength[Divisors[#]]]&,100] (* Harvey P. Dale, Jun 08 2013 *)
  • PARI
    a(n) = sumdiv(n, d, #digits(d)); \\ Michel Marcus, Sep 01 2023
    
  • Python
    from sympy import divisors
    def a(n): return sum(len(str(d)) for d in divisors(n, generator=True))
    print([a(n) for n in range(1, 97)]) # Michael S. Branicky, Nov 03 2023

Formula

a(n) = A055642(A037278(n)) = Number of digits of the concatenation of all divisors of n.
From Sida Li, Sep 01 2023: (Start)
a(n) = Sum_{d divides n} (floor(log_10(d))+1).
log_10(Product_{d divides n} d) <= a(n) <= log_10(Product_{d divides n} d) + sigma_0(n), where sigma_0(n) = A000005(n).
Equivalently, sigma_0(n)*log_10(n)/2 <= a(n) <= sigma_0(n)*log_10(n)/2 + sigma_0(n), obtained by formula in A007955.
For x >= 5, c2*log(x)^2 + c1*log(x) + c0 <= (1/x)*Sum_{n<=x} a(n) <= c2*log(x)^2 + (c1+1)*log(x) + 2*c0, where c2 = 1/(2*log(10)), c1 = (gamma-1)/log(10), c0 = 2*gamma-1, and gamma is Euler's constant. This is obtained by hyperbola trick for Sum_{n<=x} sigma_0(n), and Abel partial summation on Sum_{n<=x} sigma_0(n)*log(n). (End)

Extensions

New name from Jaroslav Krizek, Jun 15 2011

A190998 Digital root of concatenation of all divisors of n (A037278).

Original entry on oeis.org

1, 3, 4, 7, 6, 3, 8, 6, 4, 9, 3, 1, 5, 6, 6, 4, 9, 3, 2, 6, 5, 9, 6, 6, 4, 6, 4, 2, 3, 9, 5, 9, 3, 9, 3, 1, 2, 6, 2, 9, 6, 6, 8, 3, 6, 9, 3, 7, 3, 3, 9, 8, 9, 3, 9, 3, 8, 9, 6, 6, 8, 6, 5, 1, 3, 9, 5, 9, 6, 9, 9, 6, 2, 6, 7, 5, 6, 6, 8, 6, 4, 9, 3, 8, 9, 6, 3, 9, 9, 9, 4, 6, 2, 9, 3, 9, 8, 9, 3, 1, 3, 9, 5, 3, 3
Offset: 1

Views

Author

Jaroslav Krizek, Jun 15 2011

Keywords

Comments

Also digital root of A034690 (sum of digits of all the divisors of n).
Also digital root of A000203 (sum of divisors of n). - Michel Marcus, Sep 13 2014

Examples

			For n = 12: 1 + 2 + 3 + 4 + 6 + 1 + 2 = 19, 1 + 9 = 10, 1 + 0 = 1; a(12) = 1.
		

Crossrefs

Programs

  • Maple
    A190998:=proc(n) local d, i, s: d:=numtheory[divisors](n): s:=0: for i from 1 to nops(d) do s:=s+((d[i]-1) mod 9)+1: if(s>=10)then s:=((s-1) mod 9)+1: fi: od: return s: end: seq(A190998(n), n=1..105); # Nathaniel Johnston, Jun 15 2011

A190997 Product of digits of all the divisors of n.

Original entry on oeis.org

1, 2, 3, 8, 5, 36, 7, 64, 27, 0, 1, 288, 3, 56, 75, 384, 7, 2592, 9, 0, 42, 8, 6, 18432, 50, 72, 378, 3584, 18, 0, 3, 2304, 27, 168, 525, 373248, 21, 432, 243, 0, 4, 16128, 12, 512, 13500, 288, 28, 3538944, 252, 0, 105, 2880, 15, 725760, 125, 860160, 945
Offset: 1

Views

Author

Jaroslav Krizek, Jun 15 2011

Keywords

Comments

Product of digits of concatenation of all divisors of n (A037278).

Examples

			For n = 12: a(12) = 1 * 2 * 3 * 4 * 6 * 1 * 2 = 288.
		

Crossrefs

Programs

  • Maple
    A190997:=proc(n) local d, i, p: d:=numtheory[divisors](n): p:=1: for i from 1 to nops(d) do p:=p*mul(d, d=convert(d[i], base, 10)): od: return p: end: seq(A190997(n),n=1..57); # Nathaniel Johnston, Jun 15 2011
  • Mathematica
    Table[Times@@Flatten[IntegerDigits/@Divisors[n]],{n,100}] (* Harvey P. Dale, Nov 27 2022 *)
  • PARI
    a007954(n) = my(d=digits(n)); prod(i=1, #d, d[i]);
    a(n) = my(div=divisors(n), pdt=1); for(k=1, #div, pdt=pdt*a007954(div[k])); pdt \\ Felix Fröhlich, Sep 22 2016

Formula

a(n) = 0 for n = multiples of 10; a(A008592(n)) = 0 for n >=1.

A114527 Numbers k such that A086793(k) is 1.

Original entry on oeis.org

8, 14, 20, 26, 59, 62, 122, 123, 143, 149, 167, 206, 239, 257, 293, 302, 341, 347, 383, 419, 422, 491, 509, 563, 617, 653, 743, 761, 941, 1049, 1133, 1193, 1202, 1203, 1229, 1283, 1313, 1319, 1331, 1373, 1409, 1427, 1481, 1553, 1571, 1607
Offset: 1

Views

Author

Zak Seidov, May 16 2006

Keywords

Comments

Prime numbers in the sequence are also primes with digit sum = 14 (A106756). - Zak Seidov, May 21 2006

Crossrefs

Programs

  • Mathematica
    ss={8,14};Do[If[15==Total@Flatten[IntegerDigits/@Divisors[n]],AppendTo[ss,n]],{n,20,2000}];ss (* Zak Seidov, May 21 2006 *)

A119396 Numbers n such that A086793(n)=20.

Original entry on oeis.org

924, 1104, 1134, 1540, 1650, 1760, 1820, 1908, 1992, 2016, 2288, 2556, 2632, 2744, 2860, 2940, 2970, 3000, 3192, 3204, 3220, 3248, 3400, 3630, 3738, 3784, 3840, 3852, 3880, 3968, 3990, 4134, 4260, 4410, 4464, 4674, 4736, 4860, 4875, 4930, 4992, 5016
Offset: 1

Views

Author

Zak Seidov, May 17 2006

Keywords

Comments

Some trajectories are: 924,168,102,36,46,18,30,27,22,9,13,5,6,12,19,11,3,4,7,8,15 1104,168,102,... 1540,162,66,36,... 1650,162,66,36,... 2016,297,66,36,... 2940,297,66,36,... 3192,312,102,36,... All trajectories eventually join one of previous trajectories.

Examples

			924 is a term because it reaches 15 in 20 steps with this trajectory 924,168,102,36,46,18,30,27,22,9,13,5,6,12,19,11,3,4,7,8,15.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember; local t;
      if kernelopts(level) > 460 then return FAIL fi;
      t:= add(convert(convert(d,base,10),`+`),d=numtheory:-divisors(n));
      1+procname(t)
    end proc:
    f(15):= 0:
    f(1):= FAIL:
    Res:= NULL: count:= 0:
    for n from 1 while count < 100 do
      if f(n) = 20 then
        count:= count+1;
        Res:= Res, n;
       fi
    od:
    Res; # Robert Israel, Apr 03 2018

Extensions

Edited by Robert Israel, Apr 03 2018

A333618 a(n) is the total number of terms (1-digits) in the dual Zeckendorf representation of all divisors of n.

Original entry on oeis.org

1, 2, 3, 4, 3, 7, 3, 7, 6, 7, 5, 12, 4, 8, 8, 11, 5, 14, 6, 12, 9, 10, 5, 20, 7, 9, 11, 14, 6, 20, 6, 17, 11, 10, 10, 23, 6, 12, 11, 21, 5, 22, 6, 17, 17, 11, 6, 30, 8, 17, 13, 17, 8, 23, 12, 22, 13, 13, 6, 33, 7, 12, 18, 23, 12, 26, 6, 17, 13, 23, 7, 37, 7, 14
Offset: 1

Views

Author

Amiram Eldar, Mar 29 2020

Keywords

Examples

			For n = 6, its divisors are 1, 2, 3 and 6. The dual Zeckendorf representations (A104326) of the divisors are 1, 10, 11 and 111. Their total number of 1's is 1 + 1 + 2 + 3 = 7, thus a(6) = 7.
		

Crossrefs

Programs

  • Mathematica
    fibTerms[n_] := Module[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k--]; fr];
    dualZeckSum[n_] := Module[{v = fibTerms[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] == 1 && v[[i + 1]] == 0 && v[[i + 2]] == 0, v[[i]] = 0; v[[i + 1]] = 1; v[[i + 2]] = 1; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, 0, Total[v[[i[[1, 1]] ;; -1]]]]];
    a[n_] := DivisorSum[n, dualZeckSum[#] &]; Array[a, 100]

Formula

a(n) = Sum_{d|n} A112310(d).

A094450 Number of iterations of the sum of digits of the divisors of 10^n needed to reach 15.

Original entry on oeis.org

12, 10, 16, 15, 3, 11, 4, 13, 6, 6, 5, 19, 16, 3, 11, 13, 19, 7, 5, 9, 6, 16, 16, 19, 5, 3, 12, 3, 18, 16, 4, 10, 6, 16, 18, 12, 4, 16, 12, 13, 12, 5, 12, 5, 20, 15, 16, 12, 4, 16, 4, 20, 5, 19, 4, 6, 21, 5, 6, 5, 21, 12, 5, 16, 13, 17, 6, 5, 7, 21, 20, 18, 12, 10, 6, 18, 13, 13, 6, 13, 15
Offset: 1

Views

Author

Jason Earls, Jun 04 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Length[NestWhileList[Total[Flatten[IntegerDigits/@Divisors[#]]]&,10^n, #!= 15&]]-1,{n,90}] (* Harvey P. Dale, Mar 05 2019 *)
  • Python
    from sympy import divisors
    def sd(n): return sum(map(int, str(n)))
    def f(n): return sum(sd(d) for d in divisors(n, generator=True))
    def a(n):
        i, c = 10**n, 0
        while i != 15: i = f(i); c += 1
        return c
    print([a(n) for n in range(1, 82)]) # Michael S. Branicky, Dec 10 2021

A246841 Sum of digits of all the anti-divisors of n.

Original entry on oeis.org

0, 0, 2, 3, 5, 4, 10, 8, 8, 14, 12, 13, 19, 16, 9, 5, 19, 19, 9, 15, 13, 27, 25, 14, 21, 15, 24, 28, 15, 9, 24, 31, 21, 12, 16, 14, 23, 34, 25, 28, 23, 30, 29, 22, 32, 22, 24, 20, 27, 26, 15, 40, 34, 16, 20, 20, 29, 42, 45, 35, 12, 24, 40, 10, 21, 32, 60, 49
Offset: 1

Views

Author

Paolo P. Lava, Sep 05 2014

Keywords

Comments

Sum of the digits of the terms in row n of A130799.
First occurrence of k, or 0 if k never appears: 0, 3, 4, 6, 5, 0, 0, 8, 15, 7, 0, 11, 12, 10, 20, 14, 75, 69, 13, 48, 25, 44, 37, 27, 23, 50, 22, 28, 43, 42, 32, 45, 92, 38, 60, 82, 208, 81, 110, 52, 72, 58, 97, 73, 59, 77, 255, 85, 68, 127, ...

Examples

			Anti-divisors of 20 are 3, 8, 13 and the sum of their digits is 3 + 8 + 1 + 3 = 15.
		

Crossrefs

Programs

  • Maple
    # function antidivisors defined in A066272. transforms is https://oeis.org/transforms.txt
    read("transforms");
    A246841 := proc(n)
        a :=0 ;
        for adiv in antidivisors(n) do
            a := a+digsum(adiv) ;
        end do:
        a ;
    end proc:
    seq(A246841(n),n=1..30) ; # R. J. Mathar, Sep 07 2014

A094150 Number of iterations of the sum of digits of the divisors of R(n) needed to reach 15, where R(n) = A002275.

Original entry on oeis.org

5, 13, 12, 3, 11, 10, 15, 3, 14, 3, 5, 18, 13, 4, 18, 18, 5, 2, 4, 3, 12, 10, 21, 12, 18, 16, 11, 19, 20, 4, 6, 12, 13, 6, 6, 5, 3, 16, 5, 12, 12, 11, 18, 16, 18, 17, 12, 5, 12, 12, 18, 19, 14, 4, 5, 12, 18, 10, 16, 6, 13, 17, 21, 19, 6, 13, 19, 4, 3, 7, 15, 10, 21, 4, 18, 3, 5, 20, 11, 18
Offset: 2

Views

Author

Jason Earls, Jun 01 2004

Keywords

Examples

			a(9)=3 because 111111111 -> 151 -> 8 -> 15.
a(1) does not exist because 1 -> 1 and never reaches 15.
		

Crossrefs

Extensions

More terms from David Wasserman, May 22 2007
Previous Showing 11-20 of 20 results.