cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 48 results. Next

A358580 Difference between the number of leaves and the number of internal (non-leaf) nodes in the rooted tree with Matula-Goebel number n.

Original entry on oeis.org

1, 0, -1, 1, -2, 0, 0, 2, -1, -1, -3, 1, -1, 1, -2, 3, -1, 0, 1, 0, 0, -2, -2, 2, -3, 0, -1, 2, -2, -1, -4, 4, -3, 0, -1, 1, 0, 2, -1, 1, -2, 1, 0, -1, -2, -1, -3, 3, 1, -2, -1, 1, 2, 0, -4, 3, 1, -1, -2, 0, -1, -3, 0, 5, -2, -2, 0, 1, -2, 0, -1, 2, -1, 1, -3
Offset: 1

Views

Author

Gus Wiseman, Nov 25 2022

Keywords

Comments

The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The Matula-Goebel number of ((ooo(o))) is 89, and it has 4 leaves and 3 internal nodes, so a(89) = 1.
		

Crossrefs

Zeros are A358578, counted by A185650 (ordered A358579).
Positions of positive terms are counted by A358581, negative A358582.
Positions of nonnegative terms are counted by A358583, nonpositive A358584.
A000081 counts rooted trees, ordered A000108.
A034781 counts trees by nodes and height.
A055277 counts trees by nodes and leaves, ordered A001263.

Programs

  • Mathematica
    MGTree[n_]:=If[n==1,{},MGTree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Count[MGTree[n],{},{0,Infinity}]-Count[MGTree[n],[_],{0,Infinity}],{n,100}]

Formula

a(n) = A109129(n) - A342507(n).

A358590 Number of square ordered rooted trees with n nodes.

Original entry on oeis.org

1, 0, 1, 0, 6, 5, 36, 84, 309, 890, 3163, 9835, 32979, 108252, 360696, 1192410, 3984552, 13276769, 44371368, 148402665, 497072593, 1665557619, 5586863093, 18750662066, 62968243731, 211565969511, 711187790166, 2391640404772, 8045964959333, 27077856222546
Offset: 1

Views

Author

Gus Wiseman, Nov 25 2022

Keywords

Comments

We say that a tree is square if it has the same height as number of leaves.

Examples

			The a(1) = 1 through a(6) = 5 ordered trees:
  o  .  (oo)  .  ((o)oo)  ((o)(o)o)
                 ((oo)o)  ((o)(oo))
                 ((ooo))  ((o)o(o))
                 (o(o)o)  ((oo)(o))
                 (o(oo))  (o(o)(o))
                 (oo(o))
		

Crossrefs

For internals instead of height we have A000891, unordered A185650 aerated.
For internals instead of leaves we have A358588, unordered A358587.
The unordered version is A358589, ranked by A358577.
A000108 counts ordered rooted trees, unordered A000081.
A001263 counts ordered rooted trees by nodes and leaves, unordered A055277.
A080936 counts ordered rooted trees by nodes and height, unordered A034781.
A090181 counts ordered rooted trees by nodes and internals, unord. A358575.

Programs

  • Mathematica
    aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[aot[n],Count[#,{},{0,Infinity}]==Depth[#]-1&]],{n,1,10}]
  • PARI
    \\ R(n,f) enumerates trees by height(h), nodes(x) and leaves(y).
    R(n,f) = {my(A=O(x*x^n), Z=0); for(h=1, n, my(p = A); A = x*(y - 1  + 1/(1 - A + O(x^n))); Z += f(h, A-p)); Z}
    seq(n) = {Vec(R(n, (h,p)->polcoef(p,h,y)), -n)} \\ Andrew Howroyd, Jan 01 2023

Extensions

Terms a(16) and beyond from Andrew Howroyd, Jan 01 2023

A358586 Number of ordered rooted trees with n nodes, at least half of which are leaves.

Original entry on oeis.org

1, 1, 1, 4, 7, 31, 66, 302, 715, 3313, 8398, 39095, 104006, 484706, 1337220, 6227730, 17678835, 82204045, 238819350, 1108202513, 3282060210, 15195242478, 45741281820, 211271435479, 644952073662, 2971835602526, 9183676536076, 42217430993002, 131873975875180, 604834233372884
Offset: 1

Views

Author

Gus Wiseman, Nov 24 2022

Keywords

Examples

			The a(1) = 1 through a(5) = 7 ordered trees:
  o  (o)  (oo)  (ooo)   (oooo)
                ((o)o)  ((o)oo)
                ((oo))  ((oo)o)
                (o(o))  ((ooo))
                        (o(o)o)
                        (o(oo))
                        (oo(o))
		

Crossrefs

For equality we have A000891, unordered A185650.
Odd-indexed terms appear to be A065097.
The unordered version is A358583.
The opposite is the same, unordered A358584.
The strict case is A358585, unordered A358581.
A000108 counts ordered rooted trees, unordered A000081.
A001263 counts ordered rooted trees by nodes and leaves, unordered A055277.
A080936 counts ordered rooted trees by nodes and height, unordered A034781.
A090181 counts ordered rooted trees by nodes and internals, unord. A358575.
A358590 counts square ordered trees, unordered A358589 (ranked by A358577).

Programs

  • Mathematica
    aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[aot[n],Count[#,{},{0,Infinity}]>=Count[#,[_],{0,Infinity}]&]],{n,1,10}]
  • PARI
    a(n) = if(n==1, 1, n--; (binomial(2*n,n)/(n+1) + if(n%2, binomial(n, (n-1)/2)^2 / n))/2) \\ Andrew Howroyd, Jan 13 2024

Formula

From Andrew Howroyd, Jan 13 2024: (Start)
a(n) = Sum_{k=1..floor(n/2)} A001263(n-1, k) for n >= 2.
a(2*n) = (A000108(2*n-1) + A000891(n-1))/2 for n >= 1;
a(2*n+1) = A000108(2*n)/2 for n >= 1. (End)

Extensions

a(16) onwards from Andrew Howroyd, Jan 13 2024

A358587 Number of n-node rooted trees of height equal to the number of internal (non-leaf) nodes.

Original entry on oeis.org

0, 0, 0, 0, 1, 4, 14, 41, 111, 282, 688, 1627, 3761, 8540, 19122, 42333, 92851, 202078, 436916, 939359, 2009781, 4281696, 9087670, 19223905, 40544951, 85284194, 178956984, 374691171, 782936761, 1632982372, 3400182458, 7068800357, 14674471611, 30422685030
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2022

Keywords

Examples

			The a(5) = 1 through a(7) = 14 trees:
  ((o)(o))  ((o)(oo))   ((o)(ooo))
            (o(o)(o))   ((oo)(oo))
            (((o)(o)))  (o(o)(oo))
            ((o)((o)))  (oo(o)(o))
                        (((o))(oo))
                        (((o)(oo)))
                        ((o)((oo)))
                        ((o)(o(o)))
                        ((o(o)(o)))
                        (o((o)(o)))
                        (o(o)((o)))
                        ((((o)(o))))
                        (((o)((o))))
                        ((o)(((o))))
		

Crossrefs

For leaves instead of height we have A185650 aerated, ranked by A358578.
These trees are ranked by A358576.
The ordered version is A358588.
Square trees are counted by A358589, ranked by A358577, ordered A358590.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height, ordered A080936.
A055277 counts rooted trees by nodes and leaves, ordered A001263.
A358575 counts rooted trees by nodes and internal nodes, ordered A090181.

Programs

  • Mathematica
    art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[art[n],Count[#,[_],{0,Infinity}]==Depth[#]-1&]],{n,1,10}]
  • PARI
    \\ Needs R(n,f) defined in A358589.
    seq(n) = {Vec(R(n, (h,p)->polcoef(subst(p, x, x/y), -h, y)), -n)} \\ Andrew Howroyd, Jan 01 2023

Formula

Conjectures from Chai Wah Wu, Apr 15 2024: (Start)
a(n) = 5*a(n-1) - 7*a(n-2) - a(n-3) + 8*a(n-4) - 4*a(n-5) for n > 7.
G.f.: x^5*(x^2 - x + 1)/((x - 1)^2*(x + 1)*(2*x - 1)^2). (End)

Extensions

Terms a(19) and beyond from Andrew Howroyd, Jan 01 2023

A358581 Number of rooted trees with n nodes, most of which are leaves.

Original entry on oeis.org

1, 0, 1, 1, 4, 5, 20, 28, 110, 169, 663, 1078, 4217, 7169, 27979, 49191, 191440, 345771, 1341974, 2477719, 9589567, 18034670, 69612556, 132984290, 511987473, 991391707, 3807503552, 7460270591, 28585315026, 56595367747, 216381073935, 432396092153
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2022

Keywords

Examples

			The a(1) = 1 through a(7) = 20 trees:
  o  .  (oo)  (ooo)  (oooo)   (ooooo)   (oooooo)
                     ((ooo))  ((oooo))  ((ooooo))
                     (o(oo))  (o(ooo))  (o(oooo))
                     (oo(o))  (oo(oo))  (oo(ooo))
                              (ooo(o))  (ooo(oo))
                                        (oooo(o))
                                        (((oooo)))
                                        ((o)(ooo))
                                        ((o(ooo)))
                                        ((oo)(oo))
                                        ((oo(oo)))
                                        ((ooo(o)))
                                        (o((ooo)))
                                        (o(o)(oo))
                                        (o(o(oo)))
                                        (o(oo(o)))
                                        (oo((oo)))
                                        (oo(o)(o))
                                        (oo(o(o)))
                                        (ooo((o)))
		

Crossrefs

For equality we have A185650 aerated, ranked by A358578.
The opposite version is A358582, non-strict A358584.
The non-strict version is A358583.
The ordered version is A358585, odd-indexed terms A065097.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height, ordered A080936.
A055277 counts rooted trees by nodes and leaves, ordered A001263.
A358575 counts rooted trees by nodes and internal nodes, ordered A090181.
A358589 counts square trees, ranked by A358577, ordered A358590.

Programs

  • Mathematica
    art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[art[n],Count[#,{},{0,Infinity}]>Count[#,[_],{0,Infinity}]&]],{n,0,10}]
  • PARI
    \\ See A358584 for R(n).
    seq(n) = {my(A=R(n)); vector(n, n, my(u=Vecrev(A[n]/y)); vecsum(u[n\2+1..#u]))} \\ Andrew Howroyd, Dec 31 2022

Formula

A358581(n) + A358584(n) = A000081(n).
A358582(n) + A358583(n) = A000081(n).
a(n) = Sum_{k=floor(n/2)+1..n} A055277(n, k). - Andrew Howroyd, Dec 31 2022

Extensions

Terms a(19) and beyond from Andrew Howroyd, Dec 31 2022

A000235 Number of n-node rooted trees of height 3.

Original entry on oeis.org

0, 0, 0, 1, 3, 8, 18, 38, 76, 147, 277, 509, 924, 1648, 2912, 5088, 8823, 15170, 25935, 44042, 74427, 125112, 209411, 348960, 579326, 958077, 1579098, 2593903, 4247768, 6935070, 11290627, 18330973, 29684082, 47946852, 77258764, 124198083
Offset: 1

Views

Author

Keywords

Comments

(1, 1, 2, 3, 5, 8, ...) convolved with (0, 0, 1, 2, 4, 7, ...) = (0, 0, 1, 3, 8, ...). - Gary W. Adamson, Aug 14 2010

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column h=3 of A034781.

Programs

  • Maple
    # For Maple program see link.
    with(combstruct):
    ZL:= proc(m) local i; [T0, {seq(T||i=Prod(Z, Set(T||(i+1))), i=0..m-1), T||m=Z}, unlabeled] end: A000235:= n-> count(ZL(3), size=n)-count(ZL(2), size=n): seq(A000235(n), n=1..36); # Zerinvary Lajos, Sep 23 2007
  • Mathematica
    m = 36; Rest @ CoefficientList[ Series[x*Product[(1-x^k)^(-PartitionsP[k-1]), {k, 1, m}], {x, 0, m}], x] - PartitionsP[Range[0, m-1]] (* Jean-François Alcover, Jul 05 2011, after Christian G. Bower *)

Formula

a(n) = A001383(n) - A000041(n-1). - Christian G. Bower

A227819 Number T(n,k) of n-node rooted identity trees of height k; triangle T(n,k), n>=1, 0<=k<=n-1, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 1, 0, 0, 0, 2, 3, 1, 0, 0, 0, 2, 5, 4, 1, 0, 0, 0, 2, 8, 9, 5, 1, 0, 0, 0, 1, 12, 18, 14, 6, 1, 0, 0, 0, 1, 17, 34, 33, 20, 7, 1, 0, 0, 0, 1, 23, 61, 72, 54, 27, 8, 1, 0, 0, 0, 0, 32, 108, 149, 132, 82, 35, 9, 1, 0, 0, 0, 0, 41, 187, 301, 303, 221, 118, 44, 10, 1
Offset: 1

Views

Author

Alois P. Heinz, Jul 31 2013

Keywords

Examples

			:   T(6,4) = 3              :  T(11,3) = 1  :
:     o       o       o     :        o      :
:    / \      |       |     :      /( )\    :
:   o   o     o       o     :     o o o o   :
:   |        / \      |     :    /| | |     :
:   o       o   o     o     :   o o o o     :
:   |       |        / \    :   |   |       :
:   o       o       o   o   :   o   o       :
:   |       |       |       :               :
:   o       o       o       :               :
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 0, 1;
  0, 0, 1, 1;
  0, 0, 0, 2,  1;
  0, 0, 0, 2,  3,   1;
  0, 0, 0, 2,  5,   4,   1;
  0, 0, 0, 2,  8,   9,   5,   1;
  0, 0, 0, 1, 12,  18,  14,   6,  1;
  0, 0, 0, 1, 17,  34,  33,  20,  7,  1;
  0, 0, 0, 1, 23,  61,  72,  54, 27,  8, 1;
  0, 0, 0, 0, 32, 108, 149, 132, 82, 35, 9, 1;
		

Crossrefs

Columns k=4-10 give: A038088, A038089, A038090, A038091, A038092, A229403, A229404.
Row sums give: A004111.
Column sums give: A038081.
Largest n with T(n,k)>0 is A038093(k).
Main diagonal and lower diagonals give (offsets may differ): A000012, A001477, A000096, A166830.
T(2n,n) gives A245090.
T(2n+1,n) gives A245091.
Cf. A034781.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1 or k<1, 0,
          add(binomial(b((i-1)$2, k-1), j)*b(n-i*j, i-1, k), j=0..n/i)))
        end:
    T:= (n, k)-> b((n-1)$2, k) -`if`(k=0, 0, b((n-1)$2, k-1)):
    seq(seq(T(n, k), k=0..n-1), n=1..15);
  • Mathematica
    Drop[Transpose[Map[PadRight[#,15]&,Table[f[n_]:=Nest[ CoefficientList[ Series[ Product[(1+x^i)^#[[i]],{i,1,Length[#]}],{x,0,15}],x]&,{1},n]; f[m]-PadRight[f[m-1],Length[f[m]]],{m,1,15}]]],1]//Grid (* Geoffrey Critzer, Aug 01 2013 *)

A358379 Edge-height (or depth) of the n-th standard ordered rooted tree.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 2, 1, 2, 3, 2, 2, 3, 2, 2, 1, 4, 2, 3, 3, 3, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 1, 3, 4, 2, 2, 3, 3, 3, 3, 2, 3, 2, 2, 3, 2, 2, 2, 4, 2, 3, 3, 3, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 1, 3, 3, 4, 4, 3, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 2, 3, 3, 3, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Nov 16 2022

Keywords

Comments

We define the n-th standard ordered rooted tree to be obtained by taking the (n-1)-th composition in standard order (graded reverse-lexicographic, A066099) as root and replacing each part with its own standard ordered rooted tree. This ranking is an ordered variation of Matula-Goebel numbers, giving a bijective correspondence between positive integers and unlabeled ordered rooted trees.

Examples

			The standard ordered rooted tree ranking begins:
  1: o        10: (((o))o)   19: (((o))(o))
  2: (o)      11: ((o)(o))   20: (((o))oo)
  3: ((o))    12: ((o)oo)    21: ((o)((o)))
  4: (oo)     13: (o((o)))   22: ((o)(o)o)
  5: (((o)))  14: (o(o)o)    23: ((o)o(o))
  6: ((o)o)   15: (oo(o))    24: ((o)ooo)
  7: (o(o))   16: (oooo)     25: (o(oo))
  8: (ooo)    17: ((((o))))  26: (o((o))o)
  9: ((oo))   18: ((oo)o)    27: (o(o)(o))
For example, the 52nd ordered tree is (o((o))oo) so a(52) = 3.
		

Crossrefs

Records occur at A004249.
The triangle counting trees by this statistic is A080936, unordered A034781.
Unordered version is A109082, nodes A061775, leaves A109129, edges A196050.
Leaves are counted by A358371.
Nodes are counted by A358372.
Node-height is a(n) + 1, unordered version is A358552.
A000081 counts unordered rooted trees, ranked by A358378.
A000108 counts ordered rooted trees.
A001263 counts ordered rooted trees by leaves.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    srt[n_]:=If[n==1,{},srt/@stc[n-1]];
    Table[Depth[srt[n]]-2,{n,100}]

A358575 Triangle read by rows where T(n,k) is the number of unlabeled n-node rooted trees with k = 0..n-1 internal (non-leaf) nodes.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 8, 6, 1, 0, 1, 5, 14, 18, 9, 1, 0, 1, 6, 21, 39, 35, 12, 1, 0, 1, 7, 30, 72, 97, 62, 16, 1, 0, 1, 8, 40, 120, 214, 212, 103, 20, 1, 0, 1, 9, 52, 185, 416, 563, 429, 161, 25, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2022

Keywords

Examples

			Triangle begins:
    1
    0    1
    0    1    1
    0    1    2    1
    0    1    3    4    1
    0    1    4    8    6    1
    0    1    5   14   18    9    1
    0    1    6   21   39   35   12    1
    0    1    7   30   72   97   62   16    1
    0    1    8   40  120  214  212  103   20    1
    0    1    9   52  185  416  563  429  161   25    1
		

Crossrefs

Row sums are A000081.
Column k = n - 2 appears to be A002620.
Column k = 3 appears to be A006578.
The version for height instead of internal nodes is A034781.
Equals A055277 with rows reversed.
The ordered version is A090181 or A001263.
The central column is A185650, ordered A000891.
The left half sums to A358583, strict A358581.
The right half sums to A358584, strict A358582.

Programs

  • Mathematica
    art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[art[n],Count[#,[_],{0,Infinity}]==k&]],{n,1,10},{k,0,n-1}]

A358592 Matula-Goebel numbers of rooted trees whose height, number of leaves, and number of internal (non-leaf) nodes are all equal.

Original entry on oeis.org

18, 21, 60, 70, 78, 91, 92, 95, 102, 111, 119, 122, 129, 146, 151, 181, 201, 227, 264, 269, 308, 348, 376, 406, 418, 426, 452, 492, 497, 519, 551, 562, 574, 583, 596, 606, 659, 664, 668, 698, 707, 708, 717, 779, 794, 796, 809, 826, 834, 911, 932, 934, 942, 958
Offset: 1

Views

Author

Gus Wiseman, Nov 25 2022

Keywords

Comments

The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The terms together with their corresponding rooted trees begin:
   18: (o(o)(o))
   21: ((o)(oo))
   60: (oo(o)((o)))
   70: (o((o))(oo))
   78: (o(o)(o(o)))
   91: ((oo)(o(o)))
   92: (oo((o)(o)))
   95: (((o))(ooo))
  102: (o(o)((oo)))
  111: ((o)(oo(o)))
  119: ((oo)((oo)))
  122: (o(o(o)(o)))
  129: ((o)(o(oo)))
  146: (o((o)(oo)))
  151: ((oo(o)(o)))
  181: ((o(o)(oo)))
  201: ((o)((ooo)))
  227: (((oo)(oo)))
		

Crossrefs

Any number of leaves: A358576, counted by A358587 (ordered A358588).
Any number of internals: A358577, counted by A358589, ordered A358590.
Any height: A358578, ordered A358579, counted by A185650.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height.
A055277 counts rooted trees by nodes and leaves, ordered A001263.

Programs

  • Mathematica
    MGTree[n_]:=If[n==1,{},MGTree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Count[MGTree[#],[_],{0,Infinity}]==Count[MGTree[#],{},{0,Infinity}]==Depth[MGTree[#]]-1&]

Formula

A358552(a(n)) = A342507(a(n)) = A109129(a(n)).
Previous Showing 11-20 of 48 results. Next