cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 34 results. Next

A101427 Number of different cuboids with volume (pq)^n, where p,q are distinct prime numbers.

Original entry on oeis.org

1, 2, 8, 19, 42, 78, 139, 224, 350, 517, 744, 1032, 1405, 1862, 2432, 3115, 3942, 4914, 6067, 7400, 8954, 10729, 12768, 15072, 17689, 20618, 23912, 27571, 31650, 36150, 41131, 46592, 52598, 59149, 66312, 74088, 82549, 91694, 101600, 112267, 123774
Offset: 0

Views

Author

Anthony C Robin, Jan 17 2005

Keywords

Comments

Subsequence of A034836, which gives the number of cuboids for volume n.

Crossrefs

Column k=3 of A277239.

Programs

  • Mathematica
    a[n_] := Switch[Mod[n, 6], 0, n+1, 1|5, 3n/4 + 7/24, 2|4, n+2/3, 3, 3n/4 + 5/8] + n^4/24 + n^3/4 + 2n^2/3; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Oct 06 2016, after Frederic Solbes' formula *)
  • PARI
    a(n) = if (n % 3, ((n+2)^2*(n+1)^2 + 12*(n\2+1)^2)/24, ((n+2)^2*(n+1)^2 + 12*(n\2+1)^2+8)/24); \\ Michel Marcus, Mar 18 2014

Formula

If n is a multiple of 3, a(n) = ((n+2)^2*(n+1)^2 + 12*(floor(n/2)+1)^2+8)/24, otherwise a(n) = ((n+2)^2*(n+1)^2 + 12*(floor(n/2)+1)^2)/24. - Frederic Solbes, Mar 18 2014
G.f.: -(x^6+3*x^4+4*x^3+3*x^2+1)/((x^2+x+1)*(x+1)^2*(x-1)^5). - Colin Barker, Mar 27 2014
From Daniel Mondot, Sep 20 2016: (Start)
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - 2*a(n-4) - a(n-5) + 2*a(n-6) + a(n-7) - a(n-8) + 12, n>=8.
a(n) = 4*a(n-6) - 6*a(n-12) + 4*a(n-18) - a(n-24) + 1296, n>=24. (End)

Extensions

Extended by Ray Chandler, Dec 17 2008
Edited by Ray Chandler, Dec 19 2008
a(0) = 1 prepended by Daniel Mondot, Sep 20 2016

A321359 Expansion of Product_{1 <= i <= j <= k} (1 + x^(i*j*k)).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 8, 11, 16, 21, 27, 38, 49, 63, 84, 108, 137, 179, 226, 286, 365, 457, 570, 720, 894, 1106, 1378, 1700, 2087, 2577, 3151, 3847, 4707, 5723, 6941, 8439, 10197, 12300, 14852, 17863, 21433, 25740, 30797, 36794, 43963, 52372, 62288, 74098, 87905, 104149
Offset: 0

Views

Author

Seiichi Manyama, Nov 07 2018

Keywords

Crossrefs

Formula

G.f.: Product_{k>0} (1 + x^k)^A034836(k).

A321360 Expansion of Product_{1 <= i <= j <= k} 1/(1 - x^(i*j*k)).

Original entry on oeis.org

1, 1, 2, 3, 6, 8, 14, 19, 32, 44, 67, 91, 139, 186, 269, 362, 517, 686, 958, 1264, 1741, 2286, 3092, 4033, 5416, 7018, 9296, 11998, 15769, 20228, 26356, 33648, 43539, 55343, 71079, 89942, 114909, 144775, 183819, 230746, 291557, 364544, 458371, 571084, 714971, 887798, 1106704
Offset: 0

Views

Author

Seiichi Manyama, Nov 07 2018

Keywords

Crossrefs

Formula

Euler transform of A034836.
G.f.: Product_{k>0} 1/(1 - x^k)^A034836(k).

A321361 Expansion of Product_{1 <= i <= j <= k} (1 - x^(i*j*k)).

Original entry on oeis.org

1, -1, -1, 0, -1, 2, 0, 2, -1, 0, 3, -1, -2, -1, 1, -6, 0, -1, -1, 0, 6, 1, 1, 0, 4, 0, 0, 10, -2, -1, -9, 7, -11, 13, -15, -7, -3, -9, 0, 6, -3, -9, 14, -9, 20, -17, 20, -2, 20, 1, 25, -9, 14, 13, -3, -7, -21, -9, -11, 6, -54, 39, -22, -30, -10, 35, -21, 8, -41, -23
Offset: 0

Views

Author

Seiichi Manyama, Nov 07 2018

Keywords

Crossrefs

Convolution inverse of A321360.

Formula

G.f.: Product_{k>0} (1 - x^k)^A034836(k).

A097203 Number of 4-tuples (a,b,c,d) with 1 <= a <= b <= c <= d, a^2+b^2+c^2+d^2 = n and gcd(a,b,c,d) = 1.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 0, 1, 2, 0, 1, 2, 1, 1, 2, 1, 2, 0, 0, 3, 2, 1, 2, 1, 2, 0, 2, 2, 1, 3, 1, 2, 3, 0, 2, 4, 1, 2, 2, 1, 3, 0, 1, 3, 3, 2, 2, 4, 2, 0, 3, 2, 3, 3, 2, 3, 3, 0, 2, 5, 2, 3, 3, 2, 4, 0, 1, 5, 4, 2, 4, 2, 3, 0, 4, 4, 3
Offset: 1

Views

Author

Keywords

Comments

The old entry with this sequence number was a duplicate of A034836.
From Wolfdieter Lang, Mar 25 2013: (Start)
a(n) = 0 if n has no partition with four parts, each a (nonzero) square, and the parts have no common factor > 1.
n is not representable as a primitive sum of four nonzero squares.
If n' has a representation [s(1),s(2),s(3),s(4)] with 1 <= s(1) <= s(2) <= s(3) <= s(4) and sum(s(j)^2,j=1..4) = n', then [k*s(1),k*s(2),k*s(3),k*s(4)] is a representation of n := k^2*n'. Therefore, only primitive representations with gcd(s(1),s(2),s(3),s(4)) = 1 are here considered.
See A025428(n) for the multiplicity of the representations of n as a sum of four nonzero squares.
For the n values with a(n) not zero (primitively representable as a sum of four nonzero squares) see A222949. (End)

Examples

			The solutions (if any) for n <= 20 are as follows:
n = 1:
n = 2:
n = 3:
n = 4: 1 1 1 1
n = 5:
n = 6:
n = 7: 1 1 1 2
n = 8:
n = 9:
n = 10: 1 1 2 2
n = 11:
n = 12: 1 1 1 3
n = 13: 1 2 2 2
n = 14:
n = 15: 1 1 2 3
n = 16:
n = 17:
n = 18: 1 2 2 3
n = 19: 1 1 1 4
n = 20: 1 1 3 3
From _Wolfdieter Lang_, Mar 25 2013: (Start)
a(16) = 0 because 16 is not a primitive sum of four nonzero squares. The representation [2,2,2,2] of 16 is not primitive.
a(40) = 0 because the only representation as sum of four nonzero squares (A025428(4) = 1) is [2,2,4,4], but this is not primitive.
a(28) = 2 because the two primitive representations of 28 are
[1, 1, 1, 5] and [1, 3, 3, 3]. [2, 2, 2, 4] = 2*[1, 1, 1, 2] is not primitive due to 28 = 2^2*7. (End)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, g, t) option remember; `if`(n=0,
          `if`(g=1 and t=0, 1, 0), `if`(i<1 or t=0 or i^2*tn, 0, b(n-i^2, i, igcd(g, i), t-1))))
        end:
    a:= n-> `if`(n<4, 0, b(n, isqrt(n-3), 0, 4)):
    seq(a(n), n=1..120);  # Alois P. Heinz, Apr 02 2013
  • Mathematica
    Clear[b]; b[n_, i_, g_, t_] := b[n, i, g, t] = If[n == 0, If[g == 1 && t == 0, 1, 0], If[i < 1 || t == 0 || i^2*t < n, 0, b[n, i-1, g, t] + If[i^2 > n, 0, b[n-i^2, i, GCD[g, i], t-1]]]]; a[n_] := If[n < 4, 0, b[n, Sqrt[n-3] // Floor, 0, 4]]; Table[a[n], {n, 1, 99}] (* Jean-François Alcover, Apr 05 2013, translated from Alois P. Heinz's Maple program *)

Formula

If a(n) > 0 then 8 does not divide n.
a(n) = k if there are k different quadruples [s(1),s(2),s(3),s(4)] with 1 <= s(1) <= s(2) <= s(3) <= s(4), gcd(s(1),s(2),s(3),s(4)) = 1 and sum(s(j)^2,j=1..4) = n. If there is no such quadruple then a(n) = 0. - Wolfdieter Lang, Mar 25 2013

A101423 Number of different cuboids with volume p^3 * q^n, where p,q are distinct prime numbers.

Original entry on oeis.org

3, 6, 12, 19, 28, 38, 51, 64, 80, 97, 116, 136, 159, 182, 208, 235, 264, 294, 327, 360, 396, 433, 472, 512, 555, 598, 644, 691, 740, 790, 843, 896, 952, 1009, 1068, 1128, 1191, 1254, 1320, 1387, 1456, 1526, 1599, 1672, 1748, 1825, 1904, 1984, 2067, 2150, 2236
Offset: 0

Views

Author

Anthony C Robin, Jan 17 2005

Keywords

Comments

Subsequence of A034836, which gives the number of cuboids for volume n.

Crossrefs

Formula

a(n) = A034836(2^3*3^n) = A034836(3^3*2^n) = A034836(p^3*q^n) for p,q distinct primes.
Empirical g.f.: -(x^3+3*x^2+3*x+3)/((x+1)*(x^2+x+1)*(x-1)^3). - Colin Barker, Mar 28 2014

Extensions

Corrected, edited and extended by Ray Chandler, Dec 19 2008
a(0)=3 prepended and g.f. edited by Alois P. Heinz, Oct 05 2016

A101424 Number of different cuboids with volume p^4 * q^n, where p,q are distinct prime numbers.

Original entry on oeis.org

4, 9, 18, 28, 42, 57, 76, 96, 120, 145, 174, 204, 238, 273, 312, 352, 396, 441, 490, 540, 594, 649, 708, 768, 832, 897, 966, 1036, 1110, 1185, 1264, 1344, 1428, 1513, 1602, 1692, 1786, 1881, 1980, 2080, 2184, 2289, 2398, 2508, 2622, 2737, 2856, 2976, 3100
Offset: 0

Views

Author

Anthony C Robin, Jan 17 2005

Keywords

Comments

Subsequence of A034836, which gives the number of cuboids for volume n.

Crossrefs

Formula

a(n) = A034836(2^4*3^n) = A034836(3^4*2^n) = A034836(p^4*q^n) for p,q distinct primes.
From Colin Barker, Mar 28 2014: (Start)
The following is conjectured.
a(n) = (29 + 3*(-1)^n + 36*n + 10*n^2)/8.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: -(x+4)/((x+1)*(x-1)^3). (End)

Extensions

Edited and extended by Ray Chandler, Dec 19 2008
a(0)=4 prepended and g.f. edited by Alois P. Heinz, Oct 05 2016

A101425 Number of different cuboids with volume p^5 X q^n, where p,q are distinct prime numbers.

Original entry on oeis.org

5, 12, 24, 38, 57, 78, 104, 132, 165, 200, 240, 282, 329, 378, 432, 488, 549, 612, 680, 750, 825, 902, 984, 1068, 1157, 1248, 1344, 1442, 1545, 1650, 1760, 1872, 1989, 2108, 2232, 2358, 2489, 2622, 2760, 2900, 3045, 3192, 3344, 3498, 3657, 3818, 3984, 4152
Offset: 0

Views

Author

Anthony C Robin, Jan 17 2005

Keywords

Comments

Subsequence of A034836, which gives the number of cuboids for volume n.

Crossrefs

Formula

a(n) = A034836(2^5*3^n) = A034836(3^5*2^n) = A034836(p^5*q^n) for p,q distinct primes.
From Colin Barker, Mar 28 2014: (Start)
The following is conjectured.
a(n) = (37+3*(-1)^n+48*n+14*n^2)/8.
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4).
G.f.: -(2*x+5)/((x+1)*(x-1)^3). (End)

Extensions

Edited and extended by Ray Chandler, Dec 19 2008
a(0)=5 prepended and g.f. edited by Alois P. Heinz, Oct 05 2016

A101426 Number of different cuboids with volume p^6 * q^n, where p,q are distinct prime numbers.

Original entry on oeis.org

7, 16, 32, 51, 76, 104, 139, 176, 220, 267, 320, 376, 439, 504, 576, 651, 732, 816, 907, 1000, 1100, 1203, 1312, 1424, 1543, 1664, 1792, 1923, 2060, 2200, 2347, 2496, 2652, 2811, 2976, 3144, 3319, 3496, 3680, 3867, 4060, 4256, 4459, 4664, 4876, 5091, 5312
Offset: 0

Views

Author

Anthony C Robin, Jan 17 2005

Keywords

Comments

Subsequence of A034836, which gives the number of cuboids for volume n.

Crossrefs

Formula

a(n) = A034836(2^6*3^n) = A034836(3^6*2^n) = A034836(p^6*q^n) for p,q distinct primes.
Empirical g.f.: -(3*x^3+9*x^2+9*x+7)/((x+1)*(x^2+x+1)*(x-1)^3). - Colin Barker, Mar 28 2014

Extensions

Edited and extended by Ray Chandler, Dec 19 2008
a(0)=7 prepended and g.f. edited by Alois P. Heinz, Oct 05 2016

A226378 Number of distinct sums i+j+k with i,j,k >= 0, i*j*k = n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 3, 4, 1, 5, 1, 5, 2, 2, 2, 7, 1, 2, 2, 5, 1, 5, 1, 4, 4, 2, 1, 9, 2, 4, 2, 4, 1, 6, 2, 6, 2, 2, 1, 10, 1, 2, 4, 7, 2, 5, 1, 4, 2, 5, 1, 11, 1, 2, 4, 4, 2, 5, 1, 9, 4, 2, 1, 10
Offset: 0

Views

Author

Robert Price, Jun 12 2013

Keywords

Examples

			From _Antti Karttunen_, Aug 30 2017: (Start)
For n = 4 = 1*1*4 = 1*2*2, 1+1+4 = 6 and 1+2+2 = 5, so there are two distinct sums, and a(4) = 2.
For n = 6 = 1*1*6 = 1*2*3, 1+1+6 = 8 and 1+2+3 = 6, so there are two distinct sums, and a(6) = 2.
For n = 36, of its A034836(36) = 8 factorizations as x*y*z with 1 <= x <= y <= z: 1*1*36 = 1*2*18 = 1*3*12 = 1*4*9 = 1*6*6 = 2*2*9 = 2*3*6 = 3*3*4, sums 1+6+6 and 2+2+9 are both 13, while other triples yield unique sums, thus a(36) = 8-1 = 7. (End)
		

Crossrefs

Cf. A008578 (gives the positions of 1's after a(0)=1).
Differs from A034836 for the first time at n=36.

Programs

  • Mathematica
    f[n_] := Length[Complement[Union[Flatten[Table[If[i*j*k == n, {i + j + k}], {i, 0, n}, {j, 0, n}, {k, 0, n}], 2]], {Null}]]; Table[f[n], {n, 0, 100}]
    (* Second program, more efficient: *)
    {1}~Join~Table[With[{D = Divisors@ n}, Length@ Union@ Reap[Map[Function[a, Map[Function[b, Map[Function[c, If[a b c == n, Sow[a + b + c]]], Select[D, # <= n/a b &]]], Select[D, # <= n/a &]]], D]][[-1, 1]] ], {n, 100}] (* Michael De Vlieger, Aug 24 2017 *)
  • PARI
    A226378(n) = { my(sums=Set()); if(!n,1,fordiv(n, i, for(j=i, (n/i), if(!(n%j),for(k=j, n/(i*j), if(i*j*k==n, sums = Set(concat(sums, (i+j+k)))))))); length(sums)); }; \\ Antti Karttunen, Aug 30 2017

Formula

For n >= 1, a(n) <= A034836(n). - Antti Karttunen, Aug 30 2017
Previous Showing 21-30 of 34 results. Next