cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 52 results. Next

A161116 a(n) is the number of nontrivial positive divisors of 2n+3.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 1, 2, 0, 0, 2, 2, 0, 2, 0, 0, 4, 0, 1, 2, 0, 2, 2, 0, 0, 4, 2, 0, 2, 0, 0, 4, 2, 0, 3, 0, 2, 2, 0, 2, 2, 2, 0, 4, 0, 0, 6, 0, 0, 2, 0, 2, 4, 2, 1, 2, 2, 0, 2, 0, 2, 6, 0, 0, 2, 2, 2, 4, 0, 0, 4, 2, 0, 2, 2, 0, 6, 0, 1, 4, 0, 4, 2, 0, 0, 2
Offset: 0

Views

Author

Vladimir Shevelev, Jun 02 2009

Keywords

Comments

a(n)=0 iff n is in A067076, i.e., 2n+3 is prime; a(n) is the number of positive integers of the form (n-3k)/(2k+1), 1<=k<=n/3.

Examples

			Since for n=3 we have 2n+3=9 and only nontrivial divisor of 9 is 3, then a(3)=1.
		

Crossrefs

Programs

Formula

For n>=1, a(n)=A160973(n)+A079978(n). [Vladimir Shevelev, Jun 07 2009]
a(n) = A070824(2n+3).

Extensions

Edited by Charles R Greathouse IV, Oct 12 2009
More terms from Michel Marcus, Feb 08 2016

A161624 Sum of all numbers from n to n-th prime.

Original entry on oeis.org

3, 5, 12, 22, 56, 76, 132, 162, 240, 390, 441, 637, 783, 855, 1023, 1311, 1634, 1738, 2107, 2366, 2491, 2929, 3233, 3729, 4453, 4826, 5005, 5400, 5589, 6006, 7663, 8150, 8925, 9169, 10580, 10846, 11737, 12663, 13287, 14271, 15290, 15610, 17433, 17775
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 15 2009

Keywords

Examples

			First prime is 2, so a(1) = 1+2 = 3; fifth prime is 11, so a(5) = 5+6+7+8+9+10+11 = 56.
		

Crossrefs

Programs

  • Magma
    [ &+[n..NthPrime(n)]: n in [1..44] ]; // Klaus Brockhaus, Jun 14 2009
  • Mathematica
    snos[n_]:=Module[{pr=Prime[n]},((pr+n)(pr-n+1))/2]; Array[snos, 50] (* Harvey P. Dale, Jun 05 2012 *)

Formula

a(n) = Sum_{k=n..prime(n)} k.
a(n) = A034953(n) - A000217(n-1). - Michel Marcus, Feb 02 2018

Extensions

Edited and extended by Klaus Brockhaus, Jun 15 2009

A231989 Least prime p such that f(0),...,f(n) are all primes, where f(0) = p, then f(i+1) = triangular(f(i))+1.

Original entry on oeis.org

3, 3, 43, 236367611, 31542795419
Offset: 1

Views

Author

Alex Ratushnyak, Nov 16 2013

Keywords

Comments

Triangular(p) = p*(p+1)/2 (see A034953).

Examples

			a(2) = 3 because 3 is the least prime such that the following are two primes:
  p1 = 3 * 4 / 2 + 1 = 7.
  p2 = 7 * 8 / 2 + 1 = 29.
a(3) = 43 because 43 is the least prime such that the following are three primes:
  p1 = 43 * 44 / 2 + 1 = 947.
  p2 = 947 * 948 / 2 + 1 = 448879.
  p3 = 448879 * 448880 / 2 + 1 = 100746402761.
		

Crossrefs

A291199 Primes p such that phi(p*(p+1)/2) is a triangular number (A000217).

Original entry on oeis.org

2477, 44287823, 58192759, 110369351, 664009019, 2574106333, 6870260119, 7423240007, 60370077539, 188271042191, 235399729007, 236767359977, 305214702643, 717724689959
Offset: 1

Views

Author

Altug Alkan, Aug 20 2017

Keywords

Comments

a(15) > 10^12. - Giovanni Resta, Aug 21 2017

Examples

			Prime number 2477 is a term since phi(2477*2478/2) = 1856*1857/2.
		

Crossrefs

Programs

  • PARI
    isok(n) = isprime(n) && ispolygonal(eulerphi(n*(n+1)/2), 3);
    
  • PARI
    is(n) = ispolygonal(eulerphi(n\2+1)*(n-1), 3) && isprime(n) \\ Charles R Greathouse IV, Aug 22 2017
    
  • Python
    from _future_ import division
    from sympy.ntheory.primetest import is_square
    from sympy import totient, nextprime
    A291199_list, p = [], 3
    while p < 10**8:
        if is_square(8*(p-1)*totient((p+1)//2)+1):
            A291199_list.append(p)
        p = nextprime(p) # Chai Wah Wu, Aug 22 2017

Extensions

a(5)-a(14) from Giovanni Resta, Aug 21 2017

A307950 Primes that are the sum of two prime-indexed triangular numbers.

Original entry on oeis.org

31, 43, 97, 157, 181, 193, 281, 367, 463, 499, 587, 709, 769, 1051, 1381, 1459, 1621, 1831, 1861, 2081, 2281, 2293, 2377, 2473, 2647, 2707, 2713, 2729, 2767, 2837, 3019, 3163, 3251, 3259, 3313, 3709, 3863, 4021, 4447, 4591, 4759, 4943, 4951, 5051, 5179, 5647, 5791, 5861, 5869, 5881, 6217, 6271
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, May 07 2019

Keywords

Comments

Primes of the form A034953(i) + A034953(j).
There are primes with more than one expression of this form; e.g., 18749 = A034953(4) + A034953(44) = A034953(19) + A034953(42).

Examples

			a(3) = 97 is a term because 97 = 6 + 91 is prime where 6=A000217(3) and 91=A000217(13) are in A034953.
		

Crossrefs

Programs

  • Maple
    A034953:= map(t ->t*(t+1)/2, [seq(ithprime(i),i=1..100)]):
    A:= select(t -> t <= A034953[-1]+3 and isprime(t), {seq(seq(A034953[i]+A034953[j],j=i+1..100),i=1..99)}):
    sort(convert(A,list));

A346494 Heptagonal numbers (A000566) with prime indices (A000040).

Original entry on oeis.org

7, 18, 55, 112, 286, 403, 697, 874, 1288, 2059, 2356, 3367, 4141, 4558, 5452, 6943, 8614, 9211, 11122, 12496, 13213, 15484, 17098, 19669, 23377, 25351, 26368, 28462, 29539, 31753, 40132, 42706, 46717, 48094, 55279, 56776, 61387, 66178, 69472, 74563, 79834
Offset: 1

Views

Author

Dumitru Damian, Aug 22 2021

Keywords

Examples

			a(1) = Heptagonal(prime(1)) = A000566(2) = 2*(5*2-3)/2 = 7;
a(2) = Heptagonal(prime(2)) = A000566(3) = 3*(5*3-3)/2 = 18;
a(3) = Heptagonal(prime(3)) = A000566(5) = 5*(5*5-3)/2 = 55.
		

Crossrefs

Programs

  • Mathematica
    A346494[n_] := PolygonalNumber[7, Prime[n]]; Table[A346494[n], {n, 1, 41}] (* Robert P. P. McKone, Aug 22 2021 *)
  • PARI
    a(n) = my(p=prime(n)); p*(5*p-3)/2; \\ Michel Marcus, Sep 16 2021
  • Python
    from sympy import primerange
    print([p*(5*p-3)//2 for p in primerange(1, 180)]) # Michael S. Branicky, Aug 22 2021
    
  • Sage
    A = [int(p*(5*p-3)/2) for p in range(0,10^3) if p in Primes()]
    

Formula

a(n) = A000566(A000040(n)) = prime(n)*(5*prime(n)-3)/2.

A098997 (1/30)*(p(p+1)(2p+1)(3p^2+3p-1)) where p is prime.

Original entry on oeis.org

17, 98, 979, 4676, 39974, 89271, 327369, 562666, 1431244, 4463999, 6197520, 14822755, 24607093, 31137590, 48343448, 87633963, 149111998, 175917839, 280200834, 373671012, 428943109, 635050664, 811727882, 1148417997
Offset: 1

Views

Author

Parthasarathy Nambi, Nov 05 2004

Keywords

Examples

			If p=2, (1/30)*(2*(2+1)*(2*2+1)*(3*2^2+3*2-1)) = 17
		

Crossrefs

Similar to A034953

Programs

  • Mathematica
    Table[(p(p+1)(2p+1)(3p^2+3p-1))/30,{p,Prime[Range[30]]}] (* Harvey P. Dale, Mar 10 2019 *)

Extensions

More terms from Klaus Brockhaus, Nov 09 2004

A109923 a(n) = lcm(1,2,3,...,prime(n))/(1 + 2 + ... + prime(n)).

Original entry on oeis.org

1, 4, 15, 420, 3960, 80080, 1225224, 19399380, 5354228880, 145568097675, 7600186994400, 254425307479200, 9957281351799600, 392482839950100900, 114779426083185063200, 5474978624167927514640, 312603618218620377448800
Offset: 2

Views

Author

Amarnath Murthy, Jul 16 2005

Keywords

Examples

			a(4)=15 because the 4th prime is 7 and lcm(1,2,3,4,5,6,7)/(1+2+3+4+5+6+7) = 420/28 = 15.
		

Crossrefs

Programs

  • Maple
    a:=n->lcm(seq(i,i=1..ithprime(n)))/sum(j,j=1..ithprime(n)): seq(a(n),n=2..20); # Emeric Deutsch, Jul 16 2005
  • PARI
    a(n) = lcm(vector(prime(n), k, k))/sum(k=1, prime(n), k); \\ Michel Marcus, Mar 07 2018

Formula

a(n) = A099795(n)/A006254(n-1). - Andrey Zabolotskiy, Mar 07 2018
a(n) = A056604(n)/A034953(n). - Michel Marcus, Mar 07 2018

Extensions

More terms from Emeric Deutsch, Jul 16 2005

A122963 Triangular numbers with semiprime indices.

Original entry on oeis.org

10, 21, 45, 55, 105, 120, 231, 253, 325, 351, 561, 595, 630, 741, 780, 1081, 1225, 1326, 1540, 1653, 1711, 1953, 2145, 2415, 2775, 3003, 3403, 3655, 3741, 3828, 4186, 4371, 4465, 4560, 5671, 6216, 6670, 7021, 7140, 7381, 7503, 7626, 8385, 8911, 9045, 10011
Offset: 1

Views

Author

Jonathan Vos Post, Oct 26 2006

Keywords

Comments

Semiprime analog of A034953 Triangular numbers (A000217) with prime indices.

Examples

			a(1) = semiprime(1)*(semiprime(1)+1)/2 = 4*5/2 = 10.
a(2) = semiprime(2)*(semiprime(2)+1)/2 = 6*7/2 = 21.
a(3) = semiprime(3)*(semiprime(3)+1)/2 = 9*10/2 = 45.
		

Crossrefs

Formula

a(n) = A000217(A001358(n)) = A001358(n)*(A001358(n)+1)/2.

Extensions

a(41)-a(46) from Giovanni Resta, Jun 13 2016

A267217 10-gonal (or decagonal) numbers with prime indices.

Original entry on oeis.org

10, 27, 85, 175, 451, 637, 1105, 1387, 2047, 3277, 3751, 5365, 6601, 7267, 8695, 11077, 13747, 14701, 17755, 19951, 21097, 24727, 27307, 31417, 37345, 40501, 42127, 45475, 47197, 50737, 64135, 68251, 74665, 76867, 88357, 90751, 98125, 105787, 111055, 119197, 127627, 130501, 145351, 148417, 154645
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 12 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Prime[n] (4 Prime[n] - 3), {n, 1, 45}]
    Module[{nn=200,pn},pn=PolygonalNumber[10,Range[nn]];Table[pn[[p]],{p,Prime[ Range[PrimePi[nn]]]}]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 27 2020 *)
  • PARI
    lista(nn) = forprime(p=2, nn, print1(p*(4*p-3), ", ")); \\ Altug Alkan, Jan 12 2016

Formula

a(n) = prime(n)*(4*prime(n) - 3) = A000040(n)*(4*A000040(n) - 4).
a(n) = A001107(A000040(n)).
a(n) = sigma_0(48^(prime(n) - 1)) = A000005(A009992(A000040(n) - 1)).
Previous Showing 41-50 of 52 results. Next