cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 47 results. Next

A133537 Sum of sixth powers of two consecutive primes.

Original entry on oeis.org

793, 16354, 133274, 1889210, 6598370, 28964378, 71183450, 195081770, 742859210, 1482327002, 3453230090, 7315830650, 11071467290, 17100578378, 32943576458, 64344894770, 93700908002, 141978756530, 218558666090, 279434510210
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=793 because 2^6+3^6=793.
		

Crossrefs

Programs

  • Mathematica
    a = 6; Table[Prime[n]^a + Prime[n + 1]^a, {n, 1, 100}]

Formula

a(n) = A030516(n) + A030516(n+1). - Michel Marcus, Nov 09 2013

A127339 Numbers that are the sum of 12 consecutive primes.

Original entry on oeis.org

197, 236, 276, 318, 364, 412, 460, 510, 562, 612, 662, 714, 766, 822, 880, 936, 990, 1040, 1092, 1152, 1212, 1276, 1336, 1402, 1464, 1524, 1586, 1650, 1716, 1786, 1854, 1918, 1980, 2040, 2100, 2162, 2234, 2304, 2370, 2436, 2502, 2564, 2634, 2700, 2770
Offset: 1

Views

Author

Artur Jasinski, Jan 11 2007

Keywords

Comments

a(n) = absolute value of coefficient of x^11 of the polynomial Product_{j=0..11} (x - prime(n+j)) of degree 12; the roots of this polynomial are prime(n), ..., prime(n+11).

Crossrefs

Programs

  • Magma
    [&+[ NthPrime(n+k): k in [0..11] ]: n in [1..100] ]; // Vincenzo Librandi, Apr 03 2011
  • Mathematica
    a = {}; Do[AppendTo[a, Sum[Prime[x + n], {n, 0, 11}]], {x, 1, 50}]; a
    Total/@Partition[Prime[Range[60]],12,1] (* Harvey P. Dale, May 05 2018 *)
  • PARI
    {m=45;k=12;for(n=1,m,print1(a=sum(j=0,k-1,prime(n+j)),","))} \\ Klaus Brockhaus, Jan 13 2007
    
  • PARI
    {m=45;k=12;for(n=1,m,print1(abs(polcoeff(prod(j=0,k-1,(x-prime(n+j))),k-1)),","))} \\ Klaus Brockhaus, Jan 13 2007
    

Extensions

Edited by Klaus Brockhaus, Jan 13 2007

A102655 Numbers that are the arithmetic mean of four successive primes.

Original entry on oeis.org

9, 12, 15, 18, 22, 30, 38, 42, 46, 55, 60, 68, 81, 87, 102, 105, 108, 114, 120, 127, 139, 144, 149, 155, 165, 175, 181, 186, 195, 200, 215, 228, 232, 241, 247, 253, 260, 265, 270, 278, 291, 306, 312, 318, 333, 341, 352, 357, 363, 381, 387, 399, 420, 426, 431
Offset: 1

Views

Author

Giovanni Teofilatto, Feb 02 2005

Keywords

Examples

			a(1) = 9 because (5+7+11+13)/4=9;
a(2) = 12 because (7+11+13+17)/4=12;
a(3) = 15 because (11+13+17+19)/4=15.
		

Crossrefs

Cf. A034963.

Programs

  • Mathematica
    Select[ Table[ Sum[ Prime[i], {i, n, n + 3}]/4, {n, 83}], IntegerQ[ # ] &] (* Robert G. Wilson v, Feb 04 2005 *)
    Select[MovingAverage[Prime[Range[500]],4],IntegerQ] (* Harvey P. Dale, Aug 10 2012 *)

Formula

4*n = A000040(i) + A000040(i+1) + A000040(i+2) + A000040(i+3) for some i>=1.

Extensions

Edited by Robert G. Wilson v and W. Neville Holmes, Feb 04 2005

A133533 Sum of sixth powers of three consecutive primes.

Original entry on oeis.org

16418, 134003, 1904835, 6716019, 30735939, 76010259, 219219339, 789905091, 1630362891, 4048053411, 8203334331, 13637193699, 21850682619, 39264939507, 75124110099, 115865269131, 184159290171, 270079040451, 369892892379
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=16418 because 2^6+3^6+5^6=16418.
		

Crossrefs

Programs

  • Maple
    L:= [seq(ithprime(i)^6,i=1..100)]:
    L[1..-3]+L[2..-2]+L[3..-1]; # Robert Israel, Jun 28 2018
  • Mathematica
    a = 6; Table[Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a, {n, 1, 100}]
    Total/@(Partition[Prime[Range[25]],3,1]^6)  (* Harvey P. Dale, Mar 29 2011 *)

Formula

a(n) = A133537(n) + A030516(n+2). - Michel Marcus, Nov 09 2013

A131019 Semiperimeters of quadrilaterals whose sides are 4 consecutive odd primes.

Original entry on oeis.org

13, 18, 24, 30, 36, 44, 51, 60, 69, 76, 84, 92, 101, 110, 120, 129, 136, 145, 153, 162, 174, 185, 195, 204, 210, 216, 228, 240, 254, 267, 278, 288, 298, 310, 319, 330, 341, 350, 362, 372, 381, 390, 400, 415, 430, 445, 456, 464, 471, 482, 494, 506, 520, 530
Offset: 1

Views

Author

Jonathan Vos Post, Jun 09 2007

Keywords

Comments

(2+3+5+7)/2 = 8.5, not an integer. Hence we restrict to odd primes. The cyclic quadrilaterals whose areas, rounded, are prime are given in A131020. The prime semiperimeters begin: a(1) = 13, a(13) = 101. This arises in the cyclic quadrilateral analog of A106171.

Examples

			a(1) = (3 + 5 + 7 + 11)/2 = 13.
		

References

  • Coxeter, H. S. M. and Greitzer, S. L. "Cyclic Quadrangles; Brahmagupta's Formula", Sect. 3.2 in Geometry Revisited. Washington, DC: Math. Assoc. Amer., pp. 56-60, 1967.

Crossrefs

Programs

  • Maple
    A131019 := proc(n) local i ; add( ithprime(n+i),i=1..4)/2 ; end: for n from 1 to 180 do printf("%d, ",A131019(n)) : od:
  • Mathematica
    Plus@@@Partition[Prime[Range[2,6! ]],4,1]/2 (* Vladimir Joseph Stephan Orlovsky, Feb 18 2010 *)

Formula

a(n) = (prime(n) + prime(n+1) + prime(n+2) + prime(n+3))/2 for n>1.
a(n) = (prime(n+1) + prime(n+2) + prime(n+3) + prime(n+4))/2 = A034963(n)/2.

Extensions

Edited by R. J. Mathar, Jun 12 2007

A133539 Sum of third powers of five consecutive primes.

Original entry on oeis.org

1834, 4023, 8909, 15643, 27467, 50525, 78119, 123859, 185921, 253261, 332695, 451781, 606507, 764567, 985823, 1239911, 1480051, 1767711, 2112517, 2516723, 3071485, 3712769, 4312457, 4965713, 5555773, 6085997, 7104079, 8259443
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=1834 because 2^3+3^3+5^3+7^3+11^3=1834.
		

Crossrefs

Programs

  • Mathematica
    a = 3; Table[Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a + Prime[n + 3]^a + Prime[n + 4]^a, {n, 1, 100}]
    Total[#^3]&/@Partition[Prime[Range[40]],5,1] (* Harvey P. Dale, May 01 2013 *)

Formula

a(n) = A133525(n) + A030078(n+4). - Michel Marcus, Nov 09 2013

A133543 Sum of seventh powers of five consecutive primes.

Original entry on oeis.org

20391154, 83139543, 493476029, 1387269643, 4791271547, 22021660685, 49471526279, 143993064739, 337853466881, 606267252541, 1095640496695, 2242839022421, 4636558630107, 7584547192247, 13373440186463
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=20391154 because 2^7+3^7+5^7+7^7+11^7=20391154
		

Crossrefs

Programs

  • Mathematica
    a = 7; Table[Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a + Prime[n + 3]^a + Prime[n + 4]^a, {n, 1, 100}]
    Total/@Partition[Prime[Range[20]]^7,5,1] (* Harvey P. Dale, Mar 05 2022 *)

A133541 Sum of fifth powers of five consecutive primes.

Original entry on oeis.org

181258, 552519, 1972133, 4445107, 10864643, 31214741, 59472599, 127396699, 240776801, 381348901, 590182759, 979749101, 1625329443, 2354069543, 3557186207, 5132070551, 6786946651, 9149078751, 12243523093, 16477457435
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=181258 because 2^5+3^5+5^5+7^5+11^5=181258.
		

Crossrefs

Programs

  • Mathematica
    a = 5; Table[Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a + Prime[n + 3]^a + Prime[n + 4]^a, {n, 1, 100}]
    Total/@Partition[Prime[Range[30]]^5,5,1] (* Harvey P. Dale, Dec 02 2017 *)

Formula

a(n) = A133527(n) + A050997(n+4). - Michel Marcus, Nov 09 2013

A133542 Sum of sixth powers of five consecutive primes.

Original entry on oeis.org

1905628, 6732373, 30869213, 77899469, 225817709, 818869469, 1701546341, 4243135181, 8946193541, 15119520701, 25303912709, 46580770157, 86195577389, 132965847509, 217102866629, 334423935221, 463593800381, 664500722261
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=1905628 because 2^6+3^6+5^6+7^6+11^6=1905628.
		

Crossrefs

Programs

  • Mathematica
    a = 6; Table[Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a + Prime[n + 3]^a + Prime[n + 4]^a, {n, 1, 100}]
    Total/@(Partition[Prime[Range[30]],5,1]^6)  (* Harvey P. Dale, Mar 13 2011 *)

Formula

a(n) = A133528(n) + A030516(n+4). - Michel Marcus, Nov 09 2013

A245577 Numbers k such that k^4 is a sum of 4 consecutive primes.

Original entry on oeis.org

12, 90, 208, 212, 234, 242, 314, 366, 404, 410, 416, 486, 540, 590, 750, 888, 908, 1152, 1418, 1444, 1500, 1524, 1658, 1666, 1736, 1798, 1814, 1874, 1940, 1942, 2094, 2138, 2266, 2496, 2584, 3058, 3062, 3206, 3660, 4034, 4080, 4208, 4368, 4422, 4606, 4872
Offset: 1

Views

Author

Zak Seidov, Nov 29 2014

Keywords

Examples

			12^4 = 20736 = prime(689) + prime(689 + 1) + prime(689 + 2) + prime(689 + 3) = 5171 + 5179 + 5189 + 5197.
		

Crossrefs

Programs

  • Mathematica
    fQ[n_] := MemberQ[ Total@# & /@ Partition[ Table[ NextPrime[n^4/4, i], {i, {-3, -2, -1, 1, 2, 3}}], 4, 1], n^4]; Select[ Range@ 5000, fQ] (* Robert G. Wilson v, Dec 03 2014 *)
  • PARI
    isscpn(n) = {np = n^4; p = precprime(np\4); for (i=1, 3, p = precprime(p-1);); while(1, q = nextprime(p+1); r = nextprime(q+1); s = nextprime(r+1); if ((v=p+q+r+s) == np, return (1)); if (v > np, return (0)); p = q;);} \\ Michel Marcus, Nov 30 2014
Previous Showing 21-30 of 47 results. Next