cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 32 results. Next

A356533 a(n) = sigma_2(n)^2.

Original entry on oeis.org

1, 25, 100, 441, 676, 2500, 2500, 7225, 8281, 16900, 14884, 44100, 28900, 62500, 67600, 116281, 84100, 207025, 131044, 298116, 250000, 372100, 280900, 722500, 423801, 722500, 672400, 1102500, 708964, 1690000, 925444, 1863225, 1488400, 2102500, 1690000, 3651921
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 11 2022

Keywords

Crossrefs

Cf. A001157, A127473, A035116, A072861, A356535 (partial sums).

Programs

  • Mathematica
    Table[DivisorSigma[2, n]^2, {n, 1, 40}]
  • PARI
    a(n) = sigma(n, 2)^2; \\ Michel Marcus, Aug 11 2022

Formula

Dirichlet g.f.: zeta(s) * zeta(s-2)^2 * zeta(s-4) / zeta(2*s-4).
Multiplicative with a(p^e) = ((p^(2*e+2)-1)/(p^2-1))^2. - Amiram Eldar, Aug 11 2022
a(n) = A001157(n)^2. - R. J. Mathar, Aug 18 2022

A356534 a(n) = sigma_3(n)^2.

Original entry on oeis.org

1, 81, 784, 5329, 15876, 63504, 118336, 342225, 573049, 1285956, 1774224, 4177936, 4831204, 9585216, 12446784, 21911761, 24147396, 46416969, 47059600, 84603204, 92775424, 143712144, 148060224, 268304400, 248094001, 391327524, 417793600, 630612544, 594872100
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 11 2022

Keywords

Crossrefs

Cf. A001158, A127473, A035116, A072861, A356536 (partial sums).

Programs

  • Mathematica
    Table[DivisorSigma[3, n]^2, {n, 1, 40}]
  • PARI
    a(n) = sigma(n, 3)^2; \\ Michel Marcus, Aug 11 2022

Formula

Dirichlet g.f.: zeta(s) * zeta(s-3)^2 * zeta(s-6) / zeta(2*s-6).
Multiplicative with a(p^e) = ((p^(3*e+3)-1)/(p^3-1))^2. - Amiram Eldar, Aug 11 2022

A356574 a(n) = Sum_{d|n} tau(d^4), where tau(n) = number of divisors of n, cf. A000005.

Original entry on oeis.org

1, 6, 6, 15, 6, 36, 6, 28, 15, 36, 6, 90, 6, 36, 36, 45, 6, 90, 6, 90, 36, 36, 6, 168, 15, 36, 28, 90, 6, 216, 6, 66, 36, 36, 36, 225, 6, 36, 36, 168, 6, 216, 6, 90, 90, 36, 6, 270, 15, 90, 36, 90, 6, 168, 36, 168, 36, 36, 6, 540, 6, 36, 90, 91, 36, 216, 6, 90, 36, 216, 6, 420, 6, 36, 90, 90
Offset: 1

Views

Author

Seiichi Manyama, Dec 13 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Array[DivisorSum[#, DivisorSigma[0, #^4] &] &, 120] (* Michael De Vlieger, Dec 13 2022 *)
    f[p_, e_] := 2*e^2 + 3*e + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 14 2022 *)
  • PARI
    a(n) = sumdiv(n, d, numdiv(d^4));
    
  • PARI
    a(n) = sumdiv(n, d, numdiv(n*d^2));
    
  • PARI
    a(n) = sumdiv(n, d, numdiv(n^2));
    
  • PARI
    a(n) = numdiv(n)*numdiv(n^2);
    
  • PARI
    my(N=80, x='x+O('x^N)); Vec(sum(k=1, N, numdiv(k^4)*x^k/(1-x^k)))
    
  • Python
    from math import prod
    from sympy import factorint
    def A356574(n): return prod((e+1)*((e<<1)+1) for e in factorint(n).values()) # Chai Wah Wu, Dec 13 2022

Formula

a(n) = Sum_{d|n} tau(n * d^2) = Sum_{d|n} tau(n^2).
a(n) = tau(n) * tau(n^2).
G.f.: Sum_{k>=1} tau(k^4) * x^k/(1 - x^k).
Multiplicative with a(p^e) = 2*e^2 + 3*e + 1. - Amiram Eldar, Dec 14 2022

A359037 a(n) = Sum_{d|n} tau(d^6), where tau(n) = number of divisors of n, cf. A000005.

Original entry on oeis.org

1, 8, 8, 21, 8, 64, 8, 40, 21, 64, 8, 168, 8, 64, 64, 65, 8, 168, 8, 168, 64, 64, 8, 320, 21, 64, 40, 168, 8, 512, 8, 96, 64, 64, 64, 441, 8, 64, 64, 320, 8, 512, 8, 168, 168, 64, 8, 520, 21, 168, 64, 168, 8, 320, 64, 320, 64, 64, 8, 1344, 8, 64, 168, 133, 64, 512, 8, 168, 64, 512, 8, 840, 8
Offset: 1

Views

Author

Seiichi Manyama, Dec 13 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Array[DivisorSum[#, DivisorSigma[0, #^6] &] &, 120] (* Michael De Vlieger, Dec 13 2022 *)
    f[p_, e_] := 3*e^2 + 4*e + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 14 2022 *)
  • PARI
    a(n) = sumdiv(n, d, numdiv(d^6));
    
  • PARI
    a(n) = sumdiv(n, d, numdiv(n*d^4));
    
  • PARI
    a(n) = sumdiv(n, d, numdiv(n^2*d^2));
    
  • PARI
    a(n) = sumdiv(n, d, numdiv(n^3));
    
  • PARI
    a(n) = numdiv(n)*numdiv(n^3);
    
  • PARI
    my(N=80, x='x+O('x^N)); Vec(sum(k=1, N, numdiv(k^6)*x^k/(1-x^k)))

Formula

a(n) = Sum_{d|n} tau(n * d^4) = Sum_{d|n} tau(n^2 * d^2) = Sum_{d|n} tau(n^3).
a(n) = tau(n) * tau(n^3).
G.f.: Sum_{k>=1} tau(k^6) * x^k/(1 - x^k).
Multiplicative with a(p^e) = 3*e^2 + 4*e + 1. - Amiram Eldar, Dec 14 2022

A359038 a(n) = Sum_{d|n} tau(d^7), where tau(n) = number of divisors of n, cf. A000005.

Original entry on oeis.org

1, 9, 9, 24, 9, 81, 9, 46, 24, 81, 9, 216, 9, 81, 81, 75, 9, 216, 9, 216, 81, 81, 9, 414, 24, 81, 46, 216, 9, 729, 9, 111, 81, 81, 81, 576, 9, 81, 81, 414, 9, 729, 9, 216, 216, 81, 9, 675, 24, 216, 81, 216, 9, 414, 81, 414, 81, 81, 9, 1944, 9, 81, 216, 154, 81, 729, 9, 216, 81, 729, 9
Offset: 1

Views

Author

Seiichi Manyama, Dec 13 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Array[DivisorSum[#, DivisorSigma[0, #^7] &] &, 120] (* Michael De Vlieger, Dec 13 2022 *)
    f[p_, e_] := 7*e^2/2 + 9*e/2 + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 14 2022 *)
  • PARI
    a(n) = sumdiv(n, d, numdiv(d^7));
    
  • PARI
    a(n) = sumdiv(n, d, numdiv(n*d^5));
    
  • PARI
    a(n) = sumdiv(n, d, numdiv(n^2*d^3));
    
  • PARI
    a(n) = sumdiv(n, d, numdiv(n^3*d));
    
  • PARI
    a(n) = sumdiv(n, d, numdiv(n^4/d));
    
  • PARI
    my(N=80, x='x+O('x^N)); Vec(sum(k=1, N, numdiv(k^7)*x^k/(1-x^k)))
    
  • Python
    from math import prod
    from sympy import factorint
    def A359038(n): return prod((e+1)*(7*e+2)>>1 for e in factorint(n).values()) # Chai Wah Wu, Dec 13 2022

Formula

a(n) = Sum_{d|n} tau(n * d^5) = Sum_{d|n} tau(n^2 * d^3) = Sum_{d|n} tau(n^3 * d) = Sum_{d|n} tau(n^4 / d).
G.f.: Sum_{k>=1} tau(k^7) * x^k/(1 - x^k).
Multiplicative with a(p^e) = 7*e^2/2 + 9*e/2 + 1. - Amiram Eldar, Dec 14 2022

A143235 Triangle read by rows: T(n,k) = tau(n)*tau(k), the product of the number of divisors.

Original entry on oeis.org

1, 2, 4, 2, 4, 4, 3, 6, 6, 9, 2, 4, 4, 6, 4, 4, 8, 8, 12, 8, 16, 2, 4, 4, 6, 4, 8, 4, 4, 8, 8, 12, 8, 16, 8, 16, 3, 6, 6, 9, 6, 12, 6, 12, 9, 4, 8, 8, 12, 8, 16, 8, 16, 12, 16, 2, 4, 4, 6, 4, 8, 4, 8, 6, 8, 4, 6, 12, 12, 18, 12, 24, 12, 24, 18, 24, 12, 36, 2, 4, 4, 6, 4, 8, 4, 8, 6, 8, 4, 12, 4
Offset: 1

Views

Author

Gary W. Adamson, Aug 01 2008

Keywords

Comments

The triangle can also be created by the triple matrix product A130209 * A000012 * A130209.

Examples

			First few rows of the triangle =
  1;
  2, 4;
  2, 4, 4;
  3, 6, 6,  9;
  2, 4, 4,  6, 4;
  4, 8, 8, 12, 8, 16;
  2, 4, 4,  6, 4,  8, 4;
  4, 8, 8, 12, 8, 16, 8, 16;
  3, 6, 6,  9, 6, 12, 6, 12, 9;
  ...
T(9,6) = 12 = d(9)*d(6) = 3*4.
		

Crossrefs

Cf. A000005, A035116 (right diagonal), A143236 (row sums).

Programs

  • Magma
    A143235:= func< n,k | NumberOfDivisors(n)*NumberOfDivisors(k) >;
    [A143235(n,k): k in [1..n], n in [1..14]]; // G. C. Greubel, Sep 12 2024
    
  • Mathematica
    A143235[n_, k_]:= DivisorSigma[0, n]*DivisorSigma[0, k];
    Table[A143235[n, k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Sep 12 2024 *)
  • SageMath
    def A143235(n,k): return sigma(n,0)*sigma(k,0)
    flatten([[A143235(n,k) for k in range(1,n+1)] for n in range(1,15)]) # G. C. Greubel, Sep 12 2024

Formula

T(n,k) = A000005(n)*A000005(k), for 1 <= k <= n, n >= 1.
Sum_{k=1..n} T(n, k) = A143236(n) (row sums).

A337175 Number of pairs of divisors of n, (d1,d2), such that d1 <= d2 and d1*d2 < n.

Original entry on oeis.org

0, 1, 1, 2, 1, 4, 1, 4, 2, 4, 1, 9, 1, 4, 4, 6, 1, 9, 1, 9, 4, 4, 1, 16, 2, 4, 4, 9, 1, 16, 1, 9, 4, 4, 4, 20, 1, 4, 4, 16, 1, 16, 1, 9, 9, 4, 1, 25, 2, 9, 4, 9, 1, 16, 4, 16, 4, 4, 1, 36, 1, 4, 9, 12, 4, 16, 1, 9, 4, 16, 1, 36, 1, 4, 9, 9, 4, 16, 1, 25, 6, 4, 1, 36, 4, 4
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 28 2021

Keywords

Examples

			a(9) = 2; (1,1), (1,3).
a(10) = 4; (1,1), (1,2), (1,5), (2,2).
a(11) = 1; (1,1).
a(12) = 9; (1,1), (1,2), (1,3), (1,4), (1,6), (2,2), (2,3), (2,4), (3,3).
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[(1 - Sign[Floor[i*k/n]]) (1 - Ceiling[n/k] + Floor[n/k]) (1 - Ceiling[n/i] + Floor[n/i]), {i, k}], {k, n}], {n, 80}]
    a[n_] := Floor[DivisorSigma[0, n]^2/4]; Array[a, 100] (* Amiram Eldar, Feb 01 2025 *)
  • PARI
    a(n) = numdiv(n)^2\4; \\ Amiram Eldar, Feb 01 2025
  • Python
    from sympy import divisor_count
    def A337175(n):
        return divisor_count(n)**2//4  # Chai Wah Wu, Jan 29 2021
    

Formula

a(n) = Sum_{d1|n, d2|n} (1 - sign(floor(d1*d2/n))).
a(n) = tau^2/4 if tau is even and a(n) = (tau-1)*(tau+1)/4 if tau is odd, where tau = A000005(n) is the number of divisors of n, i.e., a(n) = A002620(A000005(n)) = floor(A000005(n)^2/4). - Chai Wah Wu, Jan 29 2021
a(n) = (A035116(n) - A010052(n))/4. - Ridouane Oudra, May 20 2025
a(n) = A337174(n) - A038548(n). - Ridouane Oudra, May 28 2025

A356535 a(n) = Sum_{k=1..n} sigma_2(k)^2.

Original entry on oeis.org

1, 26, 126, 567, 1243, 3743, 6243, 13468, 21749, 38649, 53533, 97633, 126533, 189033, 256633, 372914, 457014, 664039, 795083, 1093199, 1343199, 1715299, 1996199, 2718699, 3142500, 3865000, 4537400, 5639900, 6348864, 8038864, 8964308, 10827533, 12315933, 14418433
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 11 2022

Keywords

Comments

Partial sums of A356533.

Crossrefs

Programs

  • Mathematica
    Table[Sum[DivisorSigma[2, k]^2, {k, 1, n}], {n, 1, 40}]
  • PARI
    a(n) = sum(k=1, n, sigma(k, 2)^2); \\ Michel Marcus, Aug 11 2022

Formula

a(n) ~ 189 * zeta(3)^2 * zeta(5) * n^5 / Pi^6.

A356536 a(n) = Sum_{k=1..n} sigma_3(k)^2.

Original entry on oeis.org

1, 82, 866, 6195, 22071, 85575, 203911, 546136, 1119185, 2405141, 4179365, 8357301, 13188505, 22773721, 35220505, 57132266, 81279662, 127696631, 174756231, 259359435, 352134859, 495847003, 643907227, 912211627, 1160305628, 1551633152, 1969426752, 2600039296
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 11 2022

Keywords

Comments

Partial sums of A356534.
In general, for m>0, Sum_{k=1..n} sigma_m(k)^2 ~ zeta(2*m+1) * zeta(m+1)^2 * n^(2*m+1) / ((2*m+1) * zeta(2*m+2)).

Crossrefs

Programs

  • Mathematica
    Table[Sum[DivisorSigma[3, k]^2, {k, 1, n}], {n, 1, 40}]
    Accumulate[DivisorSigma[3,Range[40]]^2] (* This program is much more efficient than the first program above. *) (* Harvey P. Dale, Feb 27 2023 *)
  • PARI
    a(n) = sum(k=1, n, sigma(k, 3)^2); \\ Michel Marcus, Aug 11 2022

Formula

a(n) ~ zeta(7) * n^7 / 6.

A358380 a(n) = Sum_{d|n} tau(d^5), where tau(n) = number of divisors of n, cf. A000005.

Original entry on oeis.org

1, 7, 7, 18, 7, 49, 7, 34, 18, 49, 7, 126, 7, 49, 49, 55, 7, 126, 7, 126, 49, 49, 7, 238, 18, 49, 34, 126, 7, 343, 7, 81, 49, 49, 49, 324, 7, 49, 49, 238, 7, 343, 7, 126, 126, 49, 7, 385, 18, 126, 49, 126, 7, 238, 49, 238, 49, 49, 7, 882, 7, 49, 126, 112, 49, 343, 7, 126, 49, 343, 7, 612, 7, 49, 126, 126
Offset: 1

Views

Author

Seiichi Manyama, Dec 13 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Array[DivisorSum[#, DivisorSigma[0, #^5] &] &, 120] (* Michael De Vlieger, Dec 13 2022 *)
    f[p_, e_] := 5*e^2/2 + 7*e/2 + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 14 2022 *)
  • PARI
    a(n) = sumdiv(n, d, numdiv(d^5));
    
  • PARI
    a(n) = sumdiv(n, d, numdiv(n*d^3));
    
  • PARI
    a(n) = sumdiv(n, d, numdiv(n^2*d));
    
  • PARI
    a(n) = sumdiv(n, d, numdiv(n^3/d));
    
  • PARI
    my(N=80, x='x+O('x^N)); Vec(sum(k=1, N, numdiv(k^5)*x^k/(1-x^k)))

Formula

a(n) = Sum_{d|n} tau(n * d^3) = Sum_{d|n} tau(n^2 * d) = Sum_{d|n} tau(n^3 / d).
G.f.: Sum_{k>=1} tau(k^5) * x^k/(1 - x^k).
Multiplicative with a(p^e) = 5*e^2/2 + 7*e/2 + 1. - Amiram Eldar, Dec 14 2022
Previous Showing 11-20 of 32 results. Next