cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A002652 Theta series of Kleinian lattice Z[(1 + sqrt(-7))/ 2] in 1 complex (or 2 real) dimensions.

Original entry on oeis.org

1, 2, 4, 0, 6, 0, 0, 2, 8, 2, 0, 4, 0, 0, 4, 0, 10, 0, 4, 0, 0, 0, 8, 4, 0, 2, 0, 0, 6, 4, 0, 0, 12, 0, 0, 0, 6, 4, 0, 0, 0, 0, 0, 4, 12, 0, 8, 0, 0, 2, 4, 0, 0, 4, 0, 0, 8, 0, 8, 0, 0, 0, 0, 2, 14, 0, 0, 4, 0, 0, 0, 4, 8, 0, 8, 0, 0, 4, 0, 4, 0, 2, 0, 0, 0, 0, 8, 0, 16, 0, 0, 0, 12, 0, 0, 0, 0, 0, 4, 4, 6, 0
Offset: 0

Views

Author

Keywords

Comments

In other words, theta series of lattice with Gram matrix [2, 1; 1, 4].
The number of integer solutions (x, y) to x^2 + x*y + 2*y^2 = n.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + 4*x^2 + 6*x^4 + 2*x^7 + 8*x^8 + 2*x^9 + 4*x^11 + 4*x^14 + ...
Theta series of lattice with Gram matrix [2, 1; 1, 4] = 1 + 2*q^2 + 4*q^4 + 6*q^8 + 2*q^14 + 8*q^16 + 2*q^18 + 4*q^22 + 4*q^28 + 10*q^32 + 4*q^36 + 8*q^44 + 4*q^46 + 2*q^50 + 6*q^56 + 4*q^58 + 12*q^64 + 6*q^72 + ...
		

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, 1991, see p. 467, Entry 5(i).

Crossrefs

Number of integer solutions to f(x,y) = n where f(x,y) is the principal binary quadratic form with discriminant d: A004016 (d=-3), A004018 (d=-4), this sequence (d=-7), A033715 (d=-8), A028609 (d=-11), A028641 (d=-19), A138811 (d=-43).

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(14), 1), 85); A[1] + 2*A[2] + 4*A[3] + 6*A[5]; /* Michael Somos, Jun 10 2015 */
  • Mathematica
    f[d_] := KroneckerSymbol[-7, d]; a[n_] := 2*Total[f /@ Divisors[n]]; a[0]=1; Table[a[n], {n, 0, 101}] (* Jean-François Alcover, Nov 08 2011, after Michael Somos *)
    a[ n_] := If[ n < 1, Boole[n == 0], 2 Sum[ KroneckerSymbol[ -7, d], { d, Divisors[ n]}]]; (* Michael Somos, Jun 10 2015 *)
    a[ n_] := If[ n < 1, Boole[n == 0], 2 DivisorSum[ n, KroneckerSymbol[ -7, #] &]]; (* Michael Somos, Jun 10 2015 *)
    a[ n_] := If[ n < 1, Boole[n == 0], Length @ FindInstance[ n == x^2 + x y + 2 y^2, {x, y}, Integers, 10^9]]; (* Michael Somos, Jun 10 2015 *)
  • PARI
    {a(n) = my(t2, t3); if( n<1, n==0, t2 = 2 * sum( n=1, (sqrtint( max(0, 4*n - 7)) + 1)\2, x^(n*n - n)); t3 = 1 + 2 * sum( n=1, sqrtint(n), x^(n*n)); polcoeff( t3 * subst(t3, x, x^7) + x^2 * t2 * subst(t2, x, x^7), n))};
    
  • PARI
    {a(n) = my(t); if( n<1, n==0, 2 * issquare(n) + 2 * sum( y=1, sqrtint(n*4\7), 2 * issquare(t = 4*n - 7*y^2) - (t==0)))}; /* Michael Somos, Sep 20 2004 */
    
  • PARI
    {a(n) = my(A, A1, A2); if( n<0, 0, A = x * O(x^n); A1 = eta(x + A) * eta(x^7 + A); A2 = eta(x^2 + A) * eta(x^14 + A); polcoeff( (A1^3 + 4 * x * A2^3) / (A1 * A2), n))}; /* Michael Somos, May 28 2005 */
    
  • PARI
    {a(n) = if( n<1, n==0, 2 * qfrep( [ 2, 1; 1, 4], n, 1)[n])}; /* Michael Somos, Jun 03 2005 */
    
  • PARI
    {a(n) = if( n<1, n==0, 2 * sumdiv( n, d, kronecker( -7, d)))}; /* Michael Somos, Oct 07 2005 */
    

Formula

G.f.: theta_3(q) * theta_3(q^7) + theta_2(q) * theta_2(q^7).
G.f.: 1 + 2 * Sum_{k>0} Kronecker(-7, k) * x^k / (1 - x^k). - Michael Somos, Mar 17 2012
Expansion of phi(x) * phi(x^7) + 4 * x^2 * psi(x^2) * psi(x^14) = phi(-x) * phi(-x^7) + 4 * x * psi(x) * psi(x^7) in powers of x where phi(), psi() are Ramanujan theta functions. - Michael Somos, Mar 17 2012
Expansion of ((eta(q) * eta(q^7))^3 + 4 * (eta(q^2) * eta(q^14))^3) / (eta(q) * eta(q^2) * eta(q^7) * eta(q^14)) in powers of q. - Michael Somos, May 28 2005
Moebius transform is period 7 sequence [ 2, 2, -2, 2, -2, -2, 0, ...]. - Michael Somos, Oct 07 2005
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2 + 5 * v^2 + 4 * w^2 + 2 * u*w - 4 * u*v - 8 * v*w. - Michael Somos, Sep 20 2004
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1^3*u6 + 2*u2^3*u3 + 18*u1*u3*u6^2 + 18*u2*u3^2*u6 + 6*u1*u2^2*u6 + 3*u1^2*u2*u3 - 3*u2*u3^3 - 18*u2*u3*u6^2 - 6*u1*u6^3 - 9*u1*u3^2*u6 - 6*u1*u2^2*u3 - 6*u1^2*u2*u6. - Michael Somos, Jun 03 2005
From Michael Somos, Mar 17 2012: (Start)
G.f. is a period 1 Fourier series which satisfies f(-1 / (7 t)) = 7^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
a(n) = 2 * A035182(n) unless n = 0. a(7*n + 5) = a(7*n + 6) = a(9*n + 3) = a(9*n + 6) = 0. a(2*n + 1) = 2 * A133827(n). a(9*n) = a(n). (End)
a(0) = 1, a(n) = 2 * b(n) for n > 0, where b() is multiplicative with b(7^e) = 1, b(p^e) = e + 1 if p == 1, 2, 4 (mod 7), b(p^e) = (1 + (-1)^e) / 2 if p == 3, 5, 6 (mod 7). - Michael Somos, Jun 10 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=0..m} a(k) = 2*Pi/sqrt(7) = 2.3748208... . - Amiram Eldar, Dec 16 2023

A175629 Legendre symbol (n,7).

Original entry on oeis.org

0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1
Offset: 0

Views

Author

R. J. Mathar, Jul 29 2010

Keywords

Comments

This represents a non-principal Dirichlet character modulo 7.

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1986, page 139, k=7, Chi_2(n).

Crossrefs

The Legendre symbols (n,p): A091337 (p = 2, Kronecker symbol), A102283 (p = 3), A080891 (p = 5), this sequence (p = 7), A011582 (p = 11), A011583 (p = 13), ..., A011631 (p = 251), A165573 (p = 257), A165574 (p = 263). Also, many other sequences for p > 263 are in the OEIS.
Moebius transform of A035182.

Programs

  • Magma
    &cat [[0, 1, 1, -1, 1, -1, -1]^^20]; // Vincenzo Librandi, Jun 30 2018
    
  • Maple
    A := proc(n) numtheory[jacobi](n,7) ; end proc: seq(A(n),n=0..120) ;
  • Mathematica
    LinearRecurrence[{-1,-1,-1,-1,-1,-1},{0,1,1,-1,1,-1},100] (* or *) PadRight[ {},100,{0,1,1,-1,1,-1,-1}] (* Harvey P. Dale, Aug 02 2013 *)
    Table[JacobiSymbol[n, 7], {n, 0, 100}] (* Vincenzo Librandi, Jun 30 2018 *)
  • PARI
    a(n) = kronecker(n, 7); \\ Michel Marcus, Jan 28 2019

Formula

a(n) = a(n+7).
|a(n)| = A109720(n).
a(n) = -a(n-1) - a(n-2) - a(n-3) - a(n-4) - a(n-5) - a(n-6).
G.f.: x*(1 + 2*x + x^2 + 2*x^3 + x^4)/(1 + x + x^2 + x^3 + x^4 + x^5 + x^6).
a(n) == n^3 (mod 7). - Jianing Song, Jun 29 2018

A133675 Negative discriminants with form class number 1 (negated).

Original entry on oeis.org

3, 4, 7, 8, 11, 12, 16, 19, 27, 28, 43, 67, 163
Offset: 1

Views

Author

N. J. A. Sloane, May 16 2003

Keywords

Comments

The list on p. 260 of Cox is missing -12, the list in Theorem 7.30 on p. 149 is correct. - Andrew V. Sutherland, Sep 02 2012
Let b(k) be the number of integer solutions of f(x,y) = k, where f(x,y) is the principal binary quadratic form with discriminant d<0 (i.e., f(x,y) = x^2 - (d/4)*y^2 if 4|d, x^2 + x*y + ((1-d)/4)*y^2 otherwise), then this sequence lists |d| such that {b(k)/b(1): k>=1} is multiplicative. See Crossrefs for the actual sequences. - Jianing Song, Nov 20 2019

References

  • D. A. Cox, Primes of the form x^2+ny^2, Wiley, New York, 1989, pp. 149, 260.
  • D. E. Flath, Introduction to Number Theory, Wiley-Interscience, 1989.

Crossrefs

The sequences {b(k): k>=0}: A004016 (d=-3), A004018 (d=-4), A002652 (d=-7), A033715 (d=-8), A028609 (d=-11), A033716 (d=-12), A004531 (d=-16), A028641 (d=-19), A138805 (d=-27), A033719 (d=-28), A138811 (d=-43), A318984 (d=-67), A318985 (d=-163).
The sequences {b(k)/b(1): k>=1}: A002324 (d=-3), A002654 (d=-4), A035182 (d=-7), A002325 (d=-8), A035179 (d=-11), A096936 (d=-12), A113406 (d=-16), A035171 (d=-19), A138806 (d=-27), A110399 (d=-28), A035147 (d=-43), A318982 (d=-67), A318983 (d=-163).

Programs

  • PARI
    ok(n)={(-n)%4<2 && quadclassunit(-n).no == 1} \\ Andrew Howroyd, Jul 20 2018

Extensions

Corrected by David Brink, Dec 29 2007

A035184 a(n) = Sum_{d|n} Kronecker(-1, d).

Original entry on oeis.org

1, 2, 0, 3, 2, 0, 0, 4, 1, 4, 0, 0, 2, 0, 0, 5, 2, 2, 0, 6, 0, 0, 0, 0, 3, 4, 0, 0, 2, 0, 0, 6, 0, 4, 0, 3, 2, 0, 0, 8, 2, 0, 0, 0, 2, 0, 0, 0, 1, 6, 0, 6, 2, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 7, 4, 0, 0, 6, 0, 0, 0, 4, 2, 4, 0, 0, 0, 0, 0, 10, 1, 4, 0, 0, 4, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 2, 2, 0, 9, 2, 0, 0, 8, 0
Offset: 1

Views

Author

Keywords

Examples

			G.f. = x + 2*x^2 + 3*x^4 + 2*x^5 + 4*x^8 + x^9 + 4*x^10 + 2*x^13 + 5*x^16 + 2*x^17 + ...
		

Crossrefs

Inverse Moebius transform of A034947.
Sum_{d|n} Kronecker(k, d): A035143..A035181 (k=-47..-9, skipping numbers that are not cubefree), A035182 (k=-7), A192013 (k=-6), A035183 (k=-5), A002654 (k=-4), A002324 (k=-3), A002325 (k=-2), this sequence (k=-1), A000012 (k=0), A000005 (k=1), A035185 (k=2), A035186 (k=3), A001227 (k=4), A035187..A035229 (k=5..47, skipping numbers that are not cubefree).

Programs

  • Mathematica
    a[n_] := DivisorSum[n, KroneckerSymbol[-1, #] &]; Array[a, 105] (* Jean-François Alcover, Dec 02 2015 *)
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, 1/((1 - X) * (1 - kronecker( -1, p) * X))) [n])}; /* Michael Somos, Jan 05 2012 */
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, kronecker( -1, d)))}; /* Michael Somos, Jan 05 2012 */

Formula

a(n) is multiplicative with a(2^e) = e + 1, a(p^e) = e + 1 if p == 1 (mod 4), a(p^e) = (1 + (-1)^e) / 2 if p == 3 (mod 4). - Michael Somos, Jan 05 2012
a(4*n + 3) = a(9*n + 3) = a(9*n + 6) = 0. a(4*n + 1) = A008441(n). a(8*n + 1) = A113407(n). a(8*n + 5) = 2 * A053692(n). a(12*n + 1) = A002175(n). a(12*n + 5) = 2 * A121444(n).
Dirichlet g.f.: zeta(s)*beta(s)/(1 - 2^(-s)), where beta is the Dirichlet beta function. - Ralf Stephan, Mar 27 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/2 = 1.570796... (A019669). - Amiram Eldar, Oct 17 2022

A318982 a(n) = Sum_{d|n} Kronecker(-67, d).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 2, 0, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 2, 0, 2, 0, 0, 2, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0
Offset: 1

Views

Author

Jianing Song, Sep 06 2018

Keywords

Comments

Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s) + Kronecker(m,p)*p^(-2s))^(-1) for m = -67.
Half of the number of integer solutions to x^2 + x*y + 17*y^2 = n. Also, a(n) is the number of integral elements with norm n in Q[sqrt(-67)] counted up to association.
Inverse Moebius transform of A011596.

Examples

			G.f. = x + x^4 + x^9 + x^16 + 2*x^17 + 2*x^19 + 2*x^23 + x^25 + 2*x^29 + x^36 + 2*x^37 + 2*x^47 + x^49 + 2*x^59 + x^64 + x^67 + 2*x^68 + 2*x^71 + 2*x^73 + 2*x^76 + ...
		

Crossrefs

Cf. A318984.
Moebius transform gives A011596.
Number of integral elements with norm n in Q[sqrt(d)] counted up to association: A002324 (d=-3), A002654 (d=-4), A035182 (d=-7), A002325 (d=-8), A035179 (d=-11), A035171 (d=-19), A035147 (d=-43), this sequence (d=-67), A318983 (d=-163).

Programs

  • Mathematica
    a[n_]:=If[n<0, 0, DivisorSum[n, KroneckerSymbol[-67, #] &]];
    Table[a[n], {n, 1, 110}] (* Vincenzo Librandi, Sep 10 2018 *)
  • PARI
    a(n) = sumdiv(n, d, kronecker(-67, d))

Formula

a(n) is multiplicative with a(67^e) = 1, a(p^e) = (1 + (-1)^e) / 2 if Kronecker(-67, p) = -1, a(p^e) = e + 1 if Kronecker(-67, p) = 1.
G.f.: Sum_{k>0} Kronecker(-67, k) * x^k / (1 - x^k).
A318984(n) = 2 * a(n) unless n = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(67) = 0.383806... . - Amiram Eldar, Dec 16 2023

A318983 a(n) = Sum_{d|n} Kronecker(-163, d).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0
Offset: 1

Views

Author

Jianing Song, Sep 06 2018

Keywords

Comments

Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s) + Kronecker(m,p)*p^(-2s))^(-1) for m = -163.
Half of the number of integer solutions to x^2 + x*y + 41*y^2 = n. Also, a(n) is the number of integral elements with norm n in Q[sqrt(-163)] counted up to association.
Inverse Moebius transform of A011615.

Examples

			G.f. = x + x^4 + x^9 + x^16 + x^25 + x^36 + 2*x^41 + 2*x^43 + 2*x^47 + x^49 + 2*x^53 + 2*x^61 + x^64 + 2*x^71 + ...
		

Crossrefs

Cf. A318985.
Moebius transform gives A011615.
Number of integral elements with norm n in Q[sqrt(d)] counted up to association: A002324 (d=-3), A002654 (d=-4), A035182 (d=-7), A002325 (d=-8), A035179 (d=-11), A035171 (d=-19), A035147 (d=-43), A318982 (d=-67), this sequence (d=-163).

Programs

  • Mathematica
    a[n_] := DivisorSum[n, KroneckerSymbol[-163, #] &]; Array[a, 100] (* Amiram Eldar, Dec 16 2023 *)
  • PARI
    a(n) = sumdiv(n, d, kronecker(-163, d))

Formula

a(n) is multiplicative with a(163^e) = 1, a(p^e) = (1 + (-1)^e) / 2 if Kronecker(-163, p) = -1, a(p^e) = e + 1 if Kronecker(-163, p) = 1.
G.f.: Sum_{k>0} Kronecker(-163, k) * x^k / (1 - x^k).
A318985(n) = 2 * a(n) unless n = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(163) = 0.246068... . - Amiram Eldar, Dec 16 2023

A035181 a(n) = Sum_{d|n} Kronecker(-9, d).

Original entry on oeis.org

1, 2, 1, 3, 2, 2, 0, 4, 1, 4, 0, 3, 2, 0, 2, 5, 2, 2, 0, 6, 0, 0, 0, 4, 3, 4, 1, 0, 2, 4, 0, 6, 0, 4, 0, 3, 2, 0, 2, 8, 2, 0, 0, 0, 2, 0, 0, 5, 1, 6, 2, 6, 2, 2, 0, 0, 0, 4, 0, 6, 2, 0, 0, 7, 4, 0, 0, 6, 0, 0, 0, 4, 2, 4, 3, 0, 0, 4, 0, 10, 1, 4, 0, 0, 4, 0, 2, 0, 2, 4, 0, 0, 0, 0, 0, 6, 2, 2, 0, 9, 2, 4, 0, 8, 0
Offset: 1

Views

Author

Keywords

Examples

			x + 2*x^2 + x^3 + 3*x^4 + 2*x^5 + 2*x^6 + 4*x^8 + x^9 + 4*x^10 + 3*x^12 + ...
		

Crossrefs

Sum_{d|n} Kronecker(k, d): A035143..A035181 (k=-47..-9, skipping numbers that are not cubefree), A035182 (k=-7), A192013 (k=-6), A035183 (k=-5), A002654 (k=-4), A002324 (k=-3), A002325 (k=-2), A035184 (k=-1), A000012 (k=0), A000005 (k=1), A035185 (k=2), A035186 (k=3), A001227 (k=4), A035187..A035229 (k=5..47, skipping numbers that are not cubefree).

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ KroneckerSymbol[ -9, d], { d, Divisors[ n]}]] (* Michael Somos, Jun 24 2011 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, kronecker( -9, d)))} \\ Michael Somos, Jun 24 2011
    
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, 1 / ((1 - X) * (1 - kronecker( -9, p) * X))) [n])} \\ Michael Somos, Jun 24 2011
    
  • PARI
    {a(n) = local(A, p, e); if( n<0, 0, A = factor(n); prod(k=1, matsize(A)[1], if(p = A[k, 1], e = A[k, 2]; if( p==2, e+1, if( p==3, 1, if( p%4==1, e+1, (1 + (-1)^e)/2))))))} \\ Michael Somos, Jun 24 2011
    
  • PARI
    A035181(n)=sumdivmult(n,d,kronecker(-9,d)) \\ M. F. Hasler, May 08 2018

Formula

From Michael Somos, Jun 24 2011: (Start)
a(n) is multiplicative with a(2^e) = e + 1, a(3^e) = 1, a(p^e) = e + 1 if p == 1 (mod 4), a(p^e) = (1 + (-1)^e) / 2 if p == 3 (mod 4) and p > 3.
Dirichlet g.f.: zeta(s) * L(chi,s) where chi(n) = Kronecker(-9, n). Sum_{n>0} a(n) / n^s = Product_{p prime} 1 / ((1 - p^-s) * (1 - Kronecker(-9, p) * p^-s)). (End)
a(3*n) = a(n). a(2*n + 1) = A125079(n). a(4*n + 1) = A008441(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/3 = 2.094395... (A019693). - Amiram Eldar, Oct 17 2022

A110399 Expansion of (theta_3(q)*theta_3(q^7) - 1)/2 in powers of q.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 1, 2, 1, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 1, 2, 0, 0, 4, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 5, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 0, 0, 2, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Michael Somos, Oct 22 2005

Keywords

Comments

Half the number of integer solutions to x^2 + 7*y^2 = n. - Jianing Song, Nov 20 2019

Examples

			G.f. = x + x^4 + x^7 + 2*x^8 + x^9 + 2*x^11 + 3*x^16 + 2*x^23 + ...
		

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, 1991, see p. 302, Entry 17(ii).

Crossrefs

Cf. A033719 (number of integer solutions to x^2 + 7*y^2 = n).
Similar sequences: A096936, A113406, A138806.

Programs

  • Mathematica
    f[p_, e_] := If[MemberQ[{1, 2, 4}, Mod[p, 7]], e + 1, (1 + (-1)^e)/2]; f[2, e_] := e - 1; f[7, e_] := 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 07 2023 *)
  • PARI
    {a(n) = my(x); if( n<1, 0, x = valuation(n, 2); abs(x -1) * sumdiv(n/2^x, d, kronecker(-28, d)))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, e-1,  p==7, 1, kronecker(-7, p)==-1, (1+(-1)^e)/2, e+1)))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, A = x *O(x^n); polcoeff( (eta(x + A)^-2 * eta(x^2 + A)^5 * eta(x^4 + A)^-2 * eta(x^7 + A)^-2 * eta(x^14 + A)^5 * eta(x^28 + A)^-2 - 1)/2, n))};

Formula

a(n) is multiplicative with a(2^e) = |e-1|, a(7^e)= 1, a(p^e) = e+1 if p == 1, 2, 4 (mod 7), a(p^e) = (1+(-1)^e)/2 if p == 3, 5, 6 (mod 7).
G.f.: Sum_{k>0} Kronecker(-7, k) x^k/(1-(-x)^k).
G.f.: (theta_3(q)*theta_3(q^7) - 1)/2 where theta_3(q) = 1 + 2*(q + q^4 + q^9 + ...).
a(2*n + 1) = A035162(2*n + 1) = A035182(2*n + 1). A033719(n) = 2*a(n) if n > 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(2*sqrt(7)) = 0.593705... . - Amiram Eldar, Nov 16 2023

A133827 Number of solutions to x + 7 * y = 2 * n in triangular numbers.

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 2, 1, 0, 2, 0, 0, 0, 2, 0, 0, 2, 0, 0, 1, 0, 2, 0, 0, 0, 0, 1, 0, 2, 0, 2, 0, 0, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 2, 0, 0, 0, 3, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 2, 2, 0, 0, 1, 0, 0
Offset: 0

Views

Author

Michael Somos, Sep 25 2007, Oct 04 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
G.f. is called omega(q) by Berkovich and Yesilyurt.

Examples

			G.f. = 1 + x^3 + x^4 + 2*x^5 + 2*x^11 + x^12 + 2*x^14 + 2*x^18 + 2*x^21 + x^24 + ...
G.f. = q + q^7 + q^9 + 2*q^11 + 2*q^23 + q^25 + 2*q^29 + 2*q^37 + 2*q^43 + q^49 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, DivisorSum[ 2 n + 1, Mod[#, 2] KroneckerSymbol[ -28, #] &]]; (* Michael Somos, Oct 30 2015 *)
    a[ n_] := SeriesCoefficient[ (1/4) EllipticTheta[ 2, 0, x^(1/2)] EllipticTheta[ 2, 0, x^(7/2)], {x, 0, 2 n + 1}]; (* Michael Somos, Oct 30 2015 *)
  • PARI
    {a(n) = if( n<0, 0, n = 2*n + 1; sumdiv(n, d, (d%2) * kronecker( -28, d)))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<0, 0, n = 2*n + 1; A = factor(n); prod(k = 1, matsize(A)[1], [p, e] = A[k, ]; if(p == 2, 0, p == 7, 1, 1 == kronecker( -7, p), e + 1, 1-e%2)))};

Formula

Expansion of psi(x^4) * phi(x^14) + x^3 * psi(x^28) * phi(x^2) in powers of x where phi(), psi() are Ramanujan theta functions.
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(7^e) = 1, b(p^e) = (1 + (-1)^e) / 2 if p == 3, 5, 6 (mod 7), b(p^e) = e + 1 if p == 1, 2, 4 (mod 7).
a(7*n + 1) = a(7*n + 2) = a(7*n + 6) = 0. a(7*n + 3) = a(n).
Expansion of psi(q) * psi(q^7) - q * psi(q^2) * psi(q^14) = (psi(q) * psi(q^7) + psi(-q) * psi(-q^7)) / 2 in powers of q^2 where psi() is a Ramanujan theta function.
a(n) = A035162(2*n + 1) = A035182(2*n + 1) = A110399(2*n + 1) = A121454(2*n + 1).
2 * a(n) = A002652(2*n + 1) = A033719(2*n + 1). - Michael Somos, Dec 30 2016
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(2*sqrt(7)) = 0.593705... . - Amiram Eldar, Dec 29 2023
Previous Showing 21-29 of 29 results.