cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A161919 Permutation of natural numbers: concatenation of subsequences A161924(A000070(k-1)..A026905(k)), k >= 1, each sorted into ascending order.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 6, 8, 9, 11, 15, 10, 13, 16, 17, 19, 23, 31, 12, 14, 18, 21, 27, 32, 33, 35, 39, 47, 63, 20, 22, 25, 29, 34, 37, 43, 55, 64, 65, 67, 71, 79, 95, 127, 24, 26, 30, 36, 38, 41, 45, 51, 59, 66, 69, 75, 87, 111, 128, 129, 131, 135, 143, 159, 191, 255, 28, 40
Offset: 1

Views

Author

Alford Arnold, Jun 23 2009

Keywords

Comments

This is the lexicographically earliest sequence a_n for which it holds that A161511(a(n)) = A036042(n) for all n.
Triangle T(n,k) read by rows. Row n lists in increasing order the viabin numbers of the integer partitions of n (n >= 1, k >= 1). The viabin number of an integer partition is defined in the following way. Consider the southeast border of the Ferrers board of the integer partition and consider the binary number obtained by replacing each east step with 1 and each north step, except the last one, with 0. The corresponding decimal form is, by definition, the viabin number of the given integer partition. "Viabin" is coined from "via binary". For example, consider the integer partition [3,1,1] of 5. The southeast border of its Ferrers board yields 10011, leading to the viabin number 19 (an entry in the 5th row). - Emeric Deutsch, Sep 06 2017
After specifying the value of n, the first Maple program yields the entries of row n. - Emeric Deutsch, Feb 26 2016
After specifying the value of m, the third Maple program yields the first m rows; the command partovi(p) yields the viabin number of the partition p = [a,b,c,...]. - Emeric Deutsch, Aug 31 2017

Examples

			This can be viewed as an irregular table, where row r (>= 1) has A000041(r) elements, i.e., as 1; 2,3; 4,5,7; 6,8,9,11,15; 10,13,16,17,19,23,31; etc. A125106 illustrates how each number is mapped to a partition.
		

Crossrefs

Inverse: A166277. Sequence A161924 gives the same rows before sorting.

Programs

  • Maple
    n := 11: s := proc (b) local t, i, j: t := 0: for i to nops(b) do for j from i+1 to nops(b) do if b[j]-b[i] = 1 then t := t+1 else  end if end do end do: t end proc: A[n] := {}: for i to 2^n do a[i] := convert(2*i, base, 2) end do: for k to 2^n do if s(a[k]) = n then A[n] := `union`(A[n], {k}) else  end if end do: A[n]; # Emeric Deutsch, Feb 26 2016
    # second Maple program:
    f:= proc(l) local i, r; r:= 0; for i to nops(l)-1 do
           r:= 2*((x-> 2*x+1)@@(l[i+1]-l[i]))(r) od; r/2
        end:
    b:= proc(n, i) `if`(n=0 or i=1, [[0, 1$n]], [b(n, i-1)[],
          `if`(i>n, [], map(x-> [x[], i], b(n-i, i)))[]])
        end:
    T:= n-> sort(map(f, b(n$2)))[]:
    seq(T(n), n=1..10);  # Alois P. Heinz, Jul 25 2017
    # 3rd Maple program:
    m := 10; with(combinat): ff := proc (X) local s: s := [1, seq(0, j = 1 .. X[2])]: s := map(convert, s, string): return cat(op(s)) end proc: partovi := proc (P) local X, n, Y, i: X := convert(P, multiset): n := X[-1][1]: Y := map(proc (t) options operator, arrow: t[1] end proc, X): for i to n do if member(i, Y) = false then X := [op(X), [i, 0]] end if end do: X := sort(X, proc (s, t) options operator, arrow: evalb(s[1] < t[1]) end proc): X := map(ff, X): X := cat(op(X)): n := parse(X): n := convert(n, decimal, binary): (1/2)*n end proc: for n to m do {seq(partovi(partition(n)[q]), q = 1 .. numbpart(n))} end do; # Emeric Deutsch, Aug 31 2017
  • Mathematica
    columns = 10;
    row[n_] := n - 2^Floor[Log2[n]];
    col[0] = 0; col[n_] := If[EvenQ[n], col[n/2] + DigitCount[n/2, 2, 1], col[(n-1)/2] + 1];
    Clear[T]; T[, ] = 0; Do[T[row[k], col[k]] = k, {k, 1, 2^columns}];
    Table[DeleteCases[Sort @ Table[T[n-1, k], {n, 1, 2^(k-1)}], 0], {k, 1, columns}] // Flatten (* Jean-François Alcover, Feb 16 2021 *)

Extensions

Edited and extended by Antti Karttunen, Oct 12 2009

A127743 Triangular array where T(n,k) is the number of set partitions of n with k atomic parts.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 6, 5, 3, 1, 22, 16, 9, 4, 1, 92, 60, 31, 14, 5, 1, 426, 252, 120, 52, 20, 6, 1, 2146, 1160, 510, 209, 80, 27, 7, 1, 11624, 5776, 2348, 904, 335, 116, 35, 8, 1, 67146, 30832, 11610, 4184, 1481, 507, 161, 44, 9, 1
Offset: 1

Views

Author

Alford Arnold, Feb 24 2007

Keywords

Comments

Triangular array distributing the Bell numbers (A000110). The value associated with each partition is the product of A074664(k) for each part of size k, times the number of compositions associated with the partition (A048996 & A072881). The value for T(n,k) is the total of these values for each partition of n into k parts.
Calculating the appropriate weights can be done by "working backward". Suppose for example we know the weights for 1 through 6 and desire the weight for the partitions of seven: Substitute the weights for each partition value and multiply. For example, 7 = 4+3 so f([4,3]) = 6*2 = 12; adjusting for the number of permutations of [4,3] we now have 2*12 = 24. Continuing in this manner for each partition of seven and summing to 451 we now know all of the values except that associated with the partition [7] which must be 877 - 451 = 426.
From Mike Zabrocki: (Start)
Every set partition can be uniquely split into "atomic" set partitions or is itself already atomic.
{{1},{2},{3}} = {{1}}|{{1}}|{{1}}
{{1},{23}} = {{1}}|{{12}}
{{12},{3}} = {{12}}|{{1}}
{{13},{2}} is already atomic
{{123}} is already atomic
where this operation | is defined as {A1,...,Ar}|{B1,...,Bs} = {A1,...,Ar,B1+n,...,Bs+n}
where Bi+n = {bi1+n,bi2+n,...,bik+n} if Bi = {bi1,bi2,...,bik} and n = |A1|+|A2|+...+|Ar|. (End)
Subtriangle (n >= 1 and 1 <= k <= n) of triangle given by [0,1,1,2,1,3,1,4,1,5,1,6,...] DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 03 2007
From Peter Bala, Aug 05 2014: (Start)
Let B(x) = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + ... denote the o.g.f. for the Bell numbers A000110. Let f(x) = (B(x) - 1)/(x*B(x)) = 1 + x + x^2 + 2*x^3 + 6*x^4 + 22*x^5 + ..., the o.g.f. for the first column of this array. Then this array appears to be the Riordan array (f(x), x*f(x)).
If true, this gives the o.g.f. of the array as (B(x) - 1)/( x*(t + (1 - t)*B(x)) ) = 1 + (1 + t)*x + (2 + 2*t + t^2)*x^2 + ... and also the hockey-stick recurrence: T(n+1,k+1) = T(n,k) + T(n-1,k) + 2*T(n-2,k) + 6*T(n-3,k) + 22*T(n-4,k) + ..., n,k >= 1. (End)

Examples

			The partitions of 4 are
  4 31 22 211 1111
and the products are
  1*6 2*2 1*1 3*1 1*1
therefore row 4 of the table is
  6 5 3 1.
From _Philippe Deléham_, Aug 03 2007: (Start)
Triangle begins:
     1;
     1,    1;
     2,    2,   1;
     6,    5,   3,   1;
    22,   16,   9,   4,  1;
    92,   60,  31,  14,  5,  1;
   426,  252, 120,  52, 20,  6, 1;
  2146, 1160, 510, 209, 80, 27, 7, 1; ...
Triangle [0,1,1,2,1,3,1,4,1,...] DELTA [1,0,0,0,0,0,...] begins:
  1;
  0,    1;
  0,    1,    1;
  0,    2,    2,   1;
  0,    6,    5,   3,   1;
  0,   22,   16,   9,   4,  1;
  0,   92,   60,  31,  14,  5,  1;
  0,  426,  252, 120,  52, 20,  6, 1;
  0, 2146, 1160, 510, 209, 80, 27, 7, 1; ...
(End)
		

Crossrefs

Cf. A000041, A000110 (row sums), A074664 (1st column), A048996, A072881, A036043, A036042, A084938.

Programs

  • Mathematica
    T[n_, m_] := T[n, m] = Sum[Sum[T[k+i, k]*Binomial[n-m-k-1, n-m-k-i], {i, 1, n-m-k}]*Binomial[k+m-1, k], {k, 1, n-m}] + Binomial[n-1, n-m]; Table[T[n, m], {n, 1, 10}, {m, 1, n}] // Flatten (* Jean-François Alcover, Mar 23 2015, after Vladimir Kruchinin *)
  • Maxima
    T(n,m):=sum((sum(T(k+i,k)*binomial(n-m-k-1,n-m-k-i),i,1,n-m-k))*binomial(k+m-1,k),k,1,n-m)+binomial(n-1,n-m); /* Vladimir Kruchinin, Mar 21 2015 */
    
  • PARI
    {T(n,m) = sum(k=1,n-m, (sum(i=1, n-m-k, (T(k+i, k)*binomial(n-m-k-1, n-m-k-i))*binomial(k+m-1, k)))) + binomial(n-1, n-m)};
    for(n=1, 10, for(m=1, n, print1(T(n,m), ", "))) \\ G. C. Greubel, Dec 06 2018

Formula

T(n, m) = Sum_{k=1..n-m}( Sum_{i=1..n-m-k}(T(k+i, k)*C(n-m-k-1, n-m-k-i))*C(k+m-1, k) ) + C(n-1, n-m). - Vladimir Kruchinin, Mar 21 2015

Extensions

Edited by Franklin T. Adams-Watters, Jan 25 2010

A131822 Increment each prime factor for each term of the least prime signature sequence derived from A080577.

Original entry on oeis.org

1, 3, 9, 15, 27, 45, 105, 81, 135, 225, 315, 1155, 243, 405, 675, 945, 1575, 3465, 15015, 729, 1215, 2025, 2835, 3375, 4725, 10395, 11025, 17325, 45045, 255255, 2187, 3645, 6075, 8505, 10125, 14175, 31185, 23625, 33075, 51975, 135135, 121275, 225225
Offset: 1

Views

Author

Alford Arnold, Jul 19 2007

Keywords

Examples

			The term 30 = 2*3*5 becomes 105 = 3*5*7.
From A080577 we obtain
   1
   2
   4,  6
   8, 12, 30
  16, 24, 36, 60, ...
  etc.
so the sequence begins
   1
   3
   9,  15
  27,  45, 105
  81, 135, 225, 315, ...
  etc.
		

Crossrefs

Programs

  • Maple
    A003961 := proc(n) local ifs,i ; ifs := ifactors(n)[2] ; mul(nextprime(op(1,i))^op(2,i), i=ifs) ; end: A036042 := proc(n) local a, nredu ; a := 0 ; nredu := n+1 ; while nredu > 0 do nredu := nredu-combinat[numbpart](a) ; a := a+1 ; od: RETURN(a-1) ; end: A036035 := proc(n) local row,idx,pa,a,i ; if n = 0 then 1 ; else row := A036042(n) ; idx := n-add(combinat[numbpart](i),i=0..row-1) ; pa := op(-idx-1,combinat[partition](row)) ; a := 1; for i from 1 to nops(pa) do a := a*ithprime(i)^op(-i,pa) ; od; RETURN(a) ; fi ; end: A131822 := proc(n) A003961(A036035(n-1)) ; end: seq(A131822(n),n=1..80) ; # R. J. Mathar, Nov 11 2007

Formula

a(n) = A003961(A036035(n-1)). - R. J. Mathar, Nov 11 2007

Extensions

Corrected and extended by R. J. Mathar, Nov 11 2007

A211993 A list of ordered partitions of the positive integers.

Original entry on oeis.org

1, 2, 1, 1, 1, 1, 1, 2, 1, 3, 4, 2, 2, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 4, 1, 3, 2, 5, 6, 3, 3, 4, 2, 2, 2, 2, 5, 1, 3, 2, 1, 4, 1, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 3, 2, 1, 1, 5, 1, 1, 2, 2, 2, 1, 4, 2, 1, 3, 3, 1, 6, 1, 3, 2, 2, 5, 2, 4, 3, 7
Offset: 1

Views

Author

Omar E. Pol, Aug 18 2012

Keywords

Comments

The order of the partitions of the odd integers is the same as A211992. The order of the partitions of the even integers is the same as A026792.

Examples

			A table of partitions.
--------------------------------------------
.              Expanded       Geometric
Partitions     arrangement    model
--------------------------------------------
1;             1;             |*|
--------------------------------------------
2;             . 2;           |* *|
1,1;           1,1;           |o|*|
--------------------------------------------
1,1,1;         1,1,1;         |o|o|*|
2,1;           . 2,1;         |o o|*|
3;             . . 3;         |* * *|
--------------------------------------------
4,;            . . . 4;       |* * * *|
2,2;           . 2,. 2;       |* *|* *|
3,1;           . . 3,1;       |o o o|*|
2,1,1,;        . 2,1,1;       |o o|o|*|
1,1,1,1;       1,1,1,1;       |o|o|o|*|
--------------------------------------------
1,1,1,1,1;     1,1,1,1,1;     |o|o|o|o|*|
2,1,1,1;       . 2,1,1,1;     |o o|o|o|*|
3,1,1;         . . 3,1,1;     |o o o|o|*|
2,2,1;         . 2,. 2,1;     |o o|o o|*|
4,1;           . . . 4,1;     |o o o o|*|
3,2;           . . 3,. 2;     |* * *|* *|
5;             . . . . 5;     |* * * * *|
--------------------------------------------
6;             . . . . . 6;   |* * * * * *|
3,3;           . . 3,. . 3;   |* * *|* * *|
4,2;           . . . 4,. 2;   |* * * *|* *|
2,2,2;         . 2,. 2,. 2;   |* *|* *|* *|
5,1;           . . . . 5,1;   |o o o o o|*|
3,2,1;         . . 3,. 2,1;   |o o o|o o|*|
4,1,1;         . . . 4,1,1;   |o o o o|o|*|
2,2,1,1;       . 2,. 2,1,1;   |o o|o o|o|*|
3,1,1,1;       . . 3,1,1,1;   |o o o|o|o|*|
2,1,1,1,1;     . 2,1,1,1,1;   |o o|o|o|o|*|
1,1,1,1,1,1;   1,1,1,1,1,1;   |o|o|o|o|o|*|
--------------------------------------------
Note that * is a unitary element of every part of the last section of j.
		

Crossrefs

Rows sums give A036042, n>=1.
Other versions are A026792, A211992, A211994. See also A211983, A211984, A211989, A211999. Spiral arrangements are A211985-A211988, A211995-A211998.

A179972 Irregular table T(n,k) = A178886(n,k)/A048996(n,k) read by rows.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 6, 2, 2, 1, 1, 24, 6, 6, 2, 2, 1, 1, 120, 24, 24, 24, 6, 6, 6, 2, 2, 1, 1, 720, 120, 120, 120, 24, 24, 24, 24, 6, 6, 6, 2, 2, 1, 1, 5040, 720, 720, 720, 720, 120, 120, 120, 120, 120, 24, 24, 24, 24, 24, 6, 6, 6, 2, 2, 1, 1, 40320
Offset: 1

Views

Author

Alford Arnold, Aug 04 2010

Keywords

Comments

Row n has A000041(n) terms.
Consider the five partitions of the number 4:
4 3+1 2+2 2+1+1 and 1+1+1+1
rewriting as 4000 3100 2200 2110 and 1111
then a(n) counts the ways that the zeros can be permuted:
6,2,2,1,1
agreeing with the factorial of the difference between A036042 and A036043.

Examples

			Row four of A178886 begins: 6 4 2 3 1
Row four of A048996 begins: 1 2 1 3 1
so,
Row four of A179972 begins: 6 2 2 1 1
Triangle T(n,k) begins:
    1;
    1,  1;
    2,  1,  1;
    6,  2,  2,  1, 1;
   24,  6,  6,  2, 2, 1, 1;
  120, 24, 24, 24, 6, 6, 6, 2, 2, 1, 1;
  ...
		

Crossrefs

Cf. A178886, A048996, A036042, A036043, A179973 (row sums).

Formula

T(n,k) = ( A036042(n,k) - A036043(n,k))!.
T(n,k) = n!/A178888(n,k). - R. J. Mathar, Mar 03 2011

A178801 Write n! partition(n) times.

Original entry on oeis.org

1, 1, 2, 2, 6, 6, 6, 24, 24, 24, 24, 24, 120, 120, 120, 120, 120, 120, 120, 720, 720, 720, 720, 720, 720, 720, 720, 720, 720, 720, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 40320, 40320, 40320, 40320, 40320, 40320
Offset: 0

Views

Author

Alford Arnold, Jun 15 2010

Keywords

Examples

			for n = 0, 1, 2, 3, ... partition(n) (A000041) begins 1,1,2,3,5,7,11,15,... therefore Triangle begins:
   1;
   1;
   2,  2;
   6,  6,  6;
  24, 24, 24, 24, 24;
  ...
		

Crossrefs

Cf. A000041 (shape sequence), A000142, A053529 (row sums), A066186, A036042 (write n partition(n) times).

Programs

  • Mathematica
    Table[PadRight[{},PartitionsP[n],n!],{n,10}]//Flatten (* Harvey P. Dale, Apr 05 2020 *)

Extensions

More terms from R. J. Mathar, Jun 19 2010
Name clarified by N. J. A. Sloane, Apr 05 2020

A179974 Triangle read by rows: T(n,k) = (n-A049085(n,k))! in columns 1<=k<=A000041(n), rows n>=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 6, 1, 1, 2, 2, 6, 6, 24, 1, 1, 2, 6, 2, 6, 24, 6, 24, 24, 120, 1, 1, 2, 6, 2, 6, 24, 24, 6, 24, 120, 24, 120, 120, 720, 1, 1, 2, 6, 24, 2, 6, 24, 24, 120, 6, 24, 120, 120, 720, 24, 120, 720, 120, 720, 720, 5040, 1, 1, 2, 6, 24, 2, 6, 24, 120, 24, 120, 720, 6, 24, 120, 120, 720, 720, 24, 120, 720, 720, 5040, 120, 720, 5040
Offset: 1

Views

Author

Alford Arnold, Aug 05 2010

Keywords

Comments

Since A049085 is a resortment of A036043 both A179972 and A179974 have row sums equal to A179973.

Examples

			Triangle begins
1;
1,1;
1,1,2;
1,1,2,2,6;
1,1,2,2,6,6,24;
1,1,2,6,2,6,24,6,24,24,120;
1,1,2,6,2,6,24,24,6,24,120,24,120,120,720;
1,1,2,6,24,2,6,24,24,120,6,24,120,120,720,24,120,720,120,720,720,5040;
1,1,2,6,24,2,6,24,120,24,120,720,6,24,120,120,720,720,24,120,720,720,5040,120,720,5040,720,5040,5040,40320,
		

Crossrefs

Cf. A000041 (row lengths), A179973 (row sums), A036042, A049085 (max part).

A211986 A list of certain compositions which arise from the ordered partitions of the positive integers in which the shells of each integer are arranged as the arms of a spiral.

Original entry on oeis.org

1, 2, 1, 1, 3, 1, 1, 1, 2, 1, 4, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 3, 5, 3, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 4, 1, 6, 3, 3, 2, 4, 2, 2, 2, 1, 4, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 2, 1, 5, 7, 4, 3, 5, 2, 3, 2, 2, 1, 5, 1, 1, 3, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 2, 2, 2, 1, 2, 4, 1, 3, 3, 1, 6, 1
Offset: 1

Views

Author

Omar E. Pol, Aug 19 2012

Keywords

Comments

In order to construct this sequence we use the following rules:
- Consider the partitions of positive integers.
- For each positive integer its shells must be arranged as the arms of a spiral.
- The sequence lists one spiral for each positive integer.
- If the integer j is odd then the first composition listed of each spiral is j.
- If the integer j is even then we use the same spiral of A211988.

Examples

			----------------------------------------------
.                 Expanded         Geometric
Compositions     arrangement         model
----------------------------------------------
1;                    1;              |*|
----------------------------------------------
2;                  2 .;            |* *|
1,1;                1,1;            |*|o|
----------------------------------------------
3;                  . . 3;          |* * *|
1,1,1;              1,1,1;          |o|o|*|
2,1;                2 .,1;          |o o|*|
----------------------------------------------
4,;               4 . . .;        |* * * *|
2,2;              2 .,2 .;        |* *|* *|
1,2,1;            1,2 .,1;        |*|o o|o|
1,1,1,1,;         1,1,1,1;        |*|o|o|o|
1,3;              1,. . 3;        |*|o o o|
----------------------------------------------
5;                . . . . 5;      |* * * * *|
3,2;              . . 3,. 2;      |* * *|* *|
1,3,1;            1,. . 3,1;      |o|o o o|*|
1,1,1,1,1;        1,1,1,1,1;      |o|o|o|o|*|
1,2,1,1;          1,2 .,1,1;      |o|o o|o|*|
2,2,1;            2 .,2 .,1;      |o o|o o|*|
4,1;              4 . . .,1;      |o o o o|*|
----------------------------------------------
6;              6 . . . . .;    |* * * * * *|
3,3;            3 . .,3 . .;    |* * *|* * *|
2,4;            2 .,4 . . .;    |* *|* * * *|
2,2,2;          2 .,2 .,2 .;    |* *|* *|* *|
1,4,1;          1,4 . . .,1;    |*|o o o o|o|
1,2,2,1;        1,2 .,2 .,1;    |*|o o|o o|o|
1,1,2,1,1;      1,1,2 .,1,1;    |*|o|o o|o|o|
1,1,1,1,1,1;    1,1,1,1,1,1;    |*|o|o|o|o|o|
1,1,3,1;        1,1,. . 3,1;    |*|o|o o o|o|
1,3,2;          1,. . 3,. 2;    |*|o o o|o o|
1,5;            1,. . . . 5;    |*|o o o o o|
------------------------------------------------
Note that * is a unitary element of every part of the last section of j.
		

Crossrefs

Rows sums give A036042, n>=1.
Mirror of A211985. Other spiral versions are A211987, A211988, A211995-A211998. See also A026792, A211983, A211984, A211989, A211992, A211993, A211994, A211999.

A211987 A list of certain compositions which arise from the ordered partitions of the positive integers in which the shells of each integer are arranged as a spiral.

Original entry on oeis.org

1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 4, 2, 2, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 4, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 3, 5, 6, 3, 3, 4, 2, 2, 2, 2, 1, 4, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 3, 1, 5, 1, 1, 6, 1, 3, 3, 1, 4, 2, 1
Offset: 1

Views

Author

Omar E. Pol, Aug 18 2012

Keywords

Comments

In order to construct this sequence we use the following rules:
- Consider the partitions of positive integers.
- For each positive integer its shells must be arranged in a spiral.
- The sequence lists one spiral for each positive integer.
- If the integer j is odd then the last composition listed of each spiral is j.
- If the integer j is even then the first composition listed of each spiral is j.
This sequence represents a three-dimensional structure in which each column contains parts of the same size.

Examples

			----------------------------------------------
.                Expanded        Geometric
Compositions    arrangement        model
----------------------------------------------
1;                  1;              |*|
----------------------------------------------
2;                  . 2;            |* *|
1,1;                1,1;            |o|*|
----------------------------------------------
1,2;              1,. 2;          |*|o o|
1,1,1;            1,1,1;          |*|o|o|
3;                3 . .;          |* * *|
----------------------------------------------
4,;               . . . 4;        |* * * *|
2,2;              . 2,. 2;        |* *|* *|
1,2,1;            1,. 2,1;        |o|o o|*|
1,1,1,1,;         1,1,1,1;        |o|o|o|*|
3,1;              3 . .,1;        |o o o|*|
----------------------------------------------
1,4;            1,. . . 4;      |*|o o o o|
1,2,2;          1,. 2,. 2;      |*|o o|o o|
1,1,2,1;        1,1,. 2,1;      |*|o|o o|o|
1,1,1,1,1;      1,1,1,1,1;      |*|o|o|o|o|
1,3,1;          1,3 . .,1;      |*|o o o|o|
2,3;            2 .,3 . .;      |* *|* * *|
5;              5 . . . .;      |* * * * *|
----------------------------------------------
6;              . . . . . 6;    |* * * * * *|
3,3;            . . 3,. . 3;    |* * *|* * *|
4,2;            . . . 4,. 2;    |* * * *|* *|
2,2,2;          . 2,. 2,. 2;    |* *|* *|* *|
1,4,1;          1,. . . 4,1;    |o|o o o o|*|
1,2,2,1;        1,. 2,. 2,1;    |o|o o|o o|*|
1,1,2,1,1;      1,1,. 2,1,1;    |o|o|o o|o|*|
1,1,1,1,1,1;    1,1,1,1,1,1;    |o|o|o|o|o|*|
1,3,1,1;        1,3 . .,1,1;    |o|o o o|o|*|
2,3,1;          2 .,3 . .,1;    |o o|o o o|*|
5,1;            5 . . . .,1;    |o o o o o|*|
----------------------------------------------
Note that * is a unitary element of every part of the last section of j.
		

Crossrefs

Rows sums give A036042, n>=1.
Mirror of A211988. Other spiral versions are A211985, A211986, A211995-A211998. See also A026792, A211983, A211984, A211989, A211992, A211993, A211994, A211999.

A212645 a(n) = number of excess prime divisors of A181800(n) (n-th powerful number that is the first integer of its prime signature).

Original entry on oeis.org

0, 1, 2, 3, 4, 2, 5, 3, 6, 4, 4, 7, 5, 5, 8, 6, 6, 3, 9, 7, 6, 7, 4, 10, 8, 7, 8, 5, 11, 9, 8, 5, 9, 6, 8, 12, 10, 9, 6, 10, 7, 9, 13, 11, 10, 7, 6, 11, 8, 10, 7, 14, 12, 11, 8, 4, 10, 7, 12, 9, 11, 8, 15, 13, 12, 9, 5, 11, 8, 13, 10, 12, 9, 16, 14, 8, 13, 10
Offset: 1

Views

Author

Matthew Vandermast, Jun 09 2012

Keywords

Comments

The excess of n, or A046660(n), is a function of the second signature of n (cf. A212172). Since A181800 gives the first integer of each second signature, this sequence gives the value of A046660 for each second signature in order of its first appearance. Each nonnegative integer n occurs A000041(n) times in the sequence.
a(n) is also the number of prime factors of A212638(n), counted with multiplicity.

Examples

			36 (2^2*3^2, or 2*2*3*3) has 4 prime factors when repetitions are counted, but only 2 distinct prime factors.  Therefore, its "excess" as defined in A046660 is (4-2) = 2.  Since 36 = A181800(6), a(6) = 2.
		

Crossrefs

Formula

a(n) = A046660(A181800(n)) = A212639(n)-A212179(n).
a(n) = A001222(A212638(n)).
Previous Showing 21-30 of 31 results. Next