A321539
3^n with digits rearranged into nonincreasing order.
Original entry on oeis.org
1, 3, 9, 72, 81, 432, 972, 8721, 6651, 98631, 99540, 777411, 544311, 9543321, 9987642, 98744310, 76443210, 964321110, 988744320, 7666422111, 8876444310, 65433321000, 99865331100, 98877443211, 988654432221, 988876444320, 9888655432221
Offset: 0
The following are parallel families:
A000079 (2^n),
A004094 (2^n reversed),
A028909 (2^n sorted up),
A028910 (2^n sorted down),
A036447 (double and reverse),
A057615 (double and sort up),
A263451 (double and sort down);
A000244 (3^n),
A004167 (3^n reversed),
A321540 (3^n sorted up),
A321539 (3^n sorted down),
A163632 (triple and reverse),
A321542 (triple and sort up),
A321541 (triple and sort down).
A321540
3^n with digits rearranged into nondecreasing order.
Original entry on oeis.org
1, 3, 9, 27, 18, 234, 279, 1278, 1566, 13689, 4599, 114777, 113445, 1233459, 2467899, 1344789, 1234467, 11123469, 23447889, 1112246667, 134446788, 12333456, 113356899, 11234477889, 122234456889, 23444678889, 1222345568889, 2445567778899
Offset: 0
The following are parallel families:
A000079 (2^n),
A004094 (2^n reversed),
A028909 (2^n sorted up),
A028910 (2^n sorted down),
A036447 (double and reverse),
A057615 (double and sort up),
A263451 (double and sort down);
A000244 (3^n),
A004167 (3^n reversed),
A321540 (3^n sorted up),
A321539 (3^n sorted down),
A163632 (triple and reverse),
A321542 (triple and sort up),
A321541 (triple and sort down).
A321541
a(0)=1; thereafter a(n) = 3*a(n-1) with digits rearranged into nonincreasing order.
Original entry on oeis.org
1, 3, 9, 72, 621, 8631, 98532, 996552, 9986652, 99996552, 999986652, 9999996552, 99999986652, 999999996552, 9999999986652, 99999999996552, 999999999986652, 9999999999996552, 99999999999986652, 999999999999996552, 9999999999999986652, 99999999999999996552, 999999999999999986652
Offset: 0
The following are parallel families:
A000079 (2^n),
A004094 (2^n reversed),
A028909 (2^n sorted up),
A028910 (2^n sorted down),
A036447 (double and reverse),
A057615 (double and sort up),
A263451 (double and sort down);
A000244 (3^n),
A004167 (3^n reversed),
A321540 (3^n sorted up),
A321539 (3^n sorted down),
A163632 (triple and reverse),
A321542 (triple and sort up),
A321541 (triple and sort down).
A045539
Multiply by 5 and reverse.
Original entry on oeis.org
1, 5, 52, 62, 13, 56, 82, 14, 7, 53, 562, 182, 19, 59, 592, 692, 643, 5123, 51652, 62852, 62413, 560213, 5601082, 1450082, 140527, 536207, 5301862, 1390562, 182596, 89219, 590644, 223592, 697111, 5555843, 51297772, 68884652, 62324443, 512226113, 5650311652
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1,
(s-> parse(cat(s[-i]$i=1..length(s))))(""||(5*a(n-1))))
end:
seq(a(n), n=0..40); # Alois P. Heinz, Apr 09 2015
-
a[n_] := a[n] = If[n==0, 1, IntegerReverse[5a[n-1]]];
a /@ Range[0, 40] (* Jean-François Alcover, Jan 01 2021 *)
A132064
Numbers multiplied by 4 and written backwards.
Original entry on oeis.org
1, 4, 61, 442, 8671, 48643, 275491, 4691011, 44046781, 421781671, 4866217861, 44417846491, 469583176771, 4807072338781, 42155398282291, 461921395126861, 4447050855867481, 42996432430288771, 480551127927589171, 4866530171154022291, 46198061648602166491
Offset: 1
Rachit Agrawal (rachit_agrawal(AT)daiict.ac.in), Oct 30 2007
a(4) = reverse(4*a(3)) = reverse(4*reverse(4*a(2))) = reverse(4*reverse(4*reverse(4*a(1)))) = reverse(4*reverse(4*4)) = reverse(4*61) = reverse(244) = 442
-
a:= proc(n) option remember; `if`(n=1, 1,
(s-> parse(cat(s[-i]$i=1..length(s))))(""||(4*a(n-1))))
end:
seq(a(n), n=1..30); # Alois P. Heinz, Apr 09 2015
-
NestList[IntegerReverse[4#]&,1,20] (* Requires Mathematica version 11 or later *) (* Harvey P. Dale, Dec 09 2017 *)
A132078
Multiply previous term by 6 and reverse.
Original entry on oeis.org
1, 6, 63, 873, 8325, 5994, 46953, 817182, 2903094, 46581471, 628884972, 2389033773, 83620243341, 640064127105, 362674830483, 8982898406712, 27204409379835, 10972654622361, 66143772953856, 631327736268693, 8512167146697873, 83278108820037015, 90222029256866994
Offset: 1
Rachit Agrawal (rachit_agrawal(AT)daiict.ac.in), Oct 30 2007
a(4) = reverse(6 * a(3)) = reverse(6 * reverse(6 * a(2))) = reverse(6 * reverse( 6 * reverse(6 * a(1)))) = reverse(6 * reverse(6 * reverse(6))) = reverse(6 * 63) = 873.
-
f:=func; a:=[1]; for n in [2..25] do Append(~a,f(a[n-1])); end for; a; // Marius A. Burtea, Jan 03 2020
-
Nest[Append[#,IntegerReverse[6*#[[-1]]]]&,{1},22] (* James C. McMahon, Mar 03 2025 *)
Name clarified and terms a(16) and beyond from
Andrew Howroyd, Jan 02 2020
A132113
Multiply previous term by 8 and reverse.
Original entry on oeis.org
1, 8, 46, 863, 4096, 86723, 487396, 8619983, 46895986, 888761573, 4852900117, 63900232883, 460368102115, 296184492863, 4092495749632, 65079956993723, 487949556936025, 28845546953093, 447426573467032, 6526377852149753
Offset: 1
Rachit Agrawal (rachit_agrawal(AT)daiict.ac.in), Oct 31 2007
a(4) = reverse(8 * a(3))
= reverse(8 * reverse(8 * a(2)))
= reverse(8 * reverse(8 * reverse(8 * a(1))))
= reverse(8 * reverse(8 * reverse(8)))
= reverse(8 * reverse(8 * 8))
= reverse(8 * 46)
= reverse(368)
= 863.
-
rev:=proc(n) local nn: nn:=convert(n,base,10): add(nn[j]*10^(nops(nn)-j), j = 1..nops(nn)) end proc: a[1]:=1: for n from 2 to 20 do a[n]:=rev(8*a[n-1]) end do: seq(a[n],n=1..20); # Definition corrected by Emeric Deutsch, Nov 07 2007
-
NestList[IntegerReverse[8#]&,1,20] (* Harvey P. Dale, Dec 22 2018 *)
A132114
Multiply previous term by 7 and reverse.
Original entry on oeis.org
1, 7, 94, 856, 2995, 56902, 413893, 1527982, 47859601, 702710533, 1373798194, 8537856169, 38139946795, 565726979662, 4367588800693, 15840612137503, 125269482488011, 770614773688678, 6470285143034935, 54544210069919254
Offset: 1
Rachit Agrawal (rachit_agrawal(AT)daiict.ac.in), Oct 31 2007
a(4) = reverse(7 * a(3)) = reverse(7 * reverse(7 * a(2))) = reverse(7 * reverse(7 * reverse(7 * a(1)))) = reverse(7 * reverse(7 * reverse(7))) = reverse(7*94) = 856.
-
f:=func; a:=[1]; for n in [2..20] do Append(~a,f(a[n-1])); end for; a; // Marius A. Burtea, Jan 03 2020
-
seq(n)={my(a=vector(n)); a[1]=1; for(n=2, #a, a[n]=fromdigits(Vecrev(digits(a[n-1]*7)))); a} \\ Andrew Howroyd, Jan 02 2020
A133361
Multiply by 9 and reverse.
Original entry on oeis.org
1, 9, 18, 261, 9432, 88848, 236997, 3792312, 80803143, 782822727, 3454045407, 36680468013, 711212421033, 7929871190046, 41401704886317, 358679343516273, 7546461904118223, 70046073175181976, 487736675856414036, 4236277072800369834, 60582330255639462183
Offset: 1
Rachit Agrawal (rachit_agrawal(AT)daiict.ac.in), Oct 26 2007
-
a:= proc(n) option remember; `if`(n=1, 1,
(s-> parse(cat(s[-i]$i=1..length(s))))(""||(9*a(n-1))))
end:
seq(a(n), n=1..25); # Alois P. Heinz, Apr 09 2015
-
a[n_] := a[n] = If[n==1, 1, IntegerReverse[9a[n-1]]];
a /@ Range[40] (* Jean-François Alcover, Jan 01 2021 *)
A371880
Smallest number reachable starting from 1 and taking n steps either doubling or doubling+reversing.
Original entry on oeis.org
1, 2, 4, 8, 16, 23, 46, 29, 58, 71, 34, 68, 37, 47, 49, 89, 79, 59, 19, 38, 67, 35, 7, 14, 28, 56, 13, 26, 25, 5, 1, 2, 4, 8, 16, 23, 46, 29, 58, 17, 34, 68, 37, 47, 49, 89, 79, 59, 19, 38, 67, 35, 7, 14, 28, 56, 13, 26, 25, 5, 1, 2, 4, 8, 16, 23, 46, 29, 58, 17
Offset: 0
a(20) = 67 and here is the 20-move combination that reaches 67: 1, 2, 4, 8, 61, 221, 244, 884, 8671, 17342, 48643, 97286, 275491, 289055, 11875, 23750, 47500, 95000, 190000, 380000, 67.
a(21) = 35 and here is the 21-move combination that reaches 35: 1, 2, 4, 8, 61, 221, 244, 884, 8671, 17342, 48643, 97286, 275491, 289055, 11875, 23750, 47500, 95000, 91, 281, 265, 35.
a(30) = 1 using the path: 1, 2, 4, 8, 61, 122, 442, 488, 976, 2591, 2815, 365, 37, 47, 49, 98, 196, 392, 487, 479, 859, 1718, 3436, 2786, 2755, 155, 13, 26, 25, 5, 1. - _Michael S. Branicky_, Apr 14 2024
- David A. Corneth, PARI program.
- Bryle Morga et al., Optimal strategy in a game where Doubling and Doubling+Reversing are the allowed moves.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1).
-
\\ See PARI link
-
def f(k, d):
if d == 0:
return k
else:
return min(f(2*k, d-1), f(int(str(2*k)[::-1]), d - 1))
def a(n):
return f(1, n)
for n in range(25):
print(a(n))
-
from itertools import islice
def reverse(n): return int(str(n)[::-1])
def agen(): # generator of terms
reach = {1}
while True:
yield min(reach)
newreach = set()
for q in reach: newreach.update([2*q, reverse(2*q)])
reach = newreach
print(list(islice(agen(), 28))) # Michael S. Branicky, Apr 14 2024
Comments