cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A321539 3^n with digits rearranged into nonincreasing order.

Original entry on oeis.org

1, 3, 9, 72, 81, 432, 972, 8721, 6651, 98631, 99540, 777411, 544311, 9543321, 9987642, 98744310, 76443210, 964321110, 988744320, 7666422111, 8876444310, 65433321000, 99865331100, 98877443211, 988654432221, 988876444320, 9888655432221
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2018

Keywords

Crossrefs

The following are parallel families: A000079 (2^n), A004094 (2^n reversed), A028909 (2^n sorted up), A028910 (2^n sorted down), A036447 (double and reverse), A057615 (double and sort up), A263451 (double and sort down); A000244 (3^n), A004167 (3^n reversed), A321540 (3^n sorted up), A321539 (3^n sorted down), A163632 (triple and reverse), A321542 (triple and sort up), A321541 (triple and sort down).
Cf. A004186.

Programs

  • Mathematica
    A321539[n_]:=FromDigits[ReverseSort[IntegerDigits[3^n]]];Array[A321539,40,0] (* Paolo Xausa, Aug 10 2023 *)
  • Python
    def A321539(n): return int(''.join(sorted(str(3**n),reverse=True))) # Chai Wah Wu, Nov 10 2022

Formula

a(n) = A004186(A000244(n)). - Michel Marcus, Nov 10 2022

A321540 3^n with digits rearranged into nondecreasing order.

Original entry on oeis.org

1, 3, 9, 27, 18, 234, 279, 1278, 1566, 13689, 4599, 114777, 113445, 1233459, 2467899, 1344789, 1234467, 11123469, 23447889, 1112246667, 134446788, 12333456, 113356899, 11234477889, 122234456889, 23444678889, 1222345568889, 2445567778899
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2018

Keywords

Crossrefs

The following are parallel families: A000079 (2^n), A004094 (2^n reversed), A028909 (2^n sorted up), A028910 (2^n sorted down), A036447 (double and reverse), A057615 (double and sort up), A263451 (double and sort down); A000244 (3^n), A004167 (3^n reversed), A321540 (3^n sorted up), A321539 (3^n sorted down), A163632 (triple and reverse), A321542 (triple and sort up), A321541 (triple and sort down).
Cf. A004185.

Programs

  • Magma
    [Seqint(Reverse(Sort(Intseq(3^n)))):n in [0..35]]; // Vincenzo Librandi, Jan 22 2020
    
  • Mathematica
    Table[FromDigits[Sort[IntegerDigits[3^n]]], {n, 0, 40}] (* Vincenzo Librandi, Jan 22 2020 *)
  • Python
    def A321540(n): return int(''.join(sorted(str(3**n)))) # Chai Wah Wu, Nov 10 2022

Formula

a(n) = A004185(A000244(n)). - Michel Marcus, Nov 10 2022

A321541 a(0)=1; thereafter a(n) = 3*a(n-1) with digits rearranged into nonincreasing order.

Original entry on oeis.org

1, 3, 9, 72, 621, 8631, 98532, 996552, 9986652, 99996552, 999986652, 9999996552, 99999986652, 999999996552, 9999999986652, 99999999996552, 999999999986652, 9999999999996552, 99999999999986652, 999999999999996552, 9999999999999986652, 99999999999999996552, 999999999999999986652
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2018

Keywords

Comments

In contrast to A321542, this sequence increases forever.
Proof: The terms from a(7) onwards can be described as follows:
3 times the number 9 (2k times) 6552 is 2 9 (2k-1 times) 89656 which becomes 9 (2k times) 86652 when sorted;
then 3 times the number 9 (2k times) 86652 is 2 9 (2k times) 59956 which becomes 9 (2k+2 times) 6552 when sorted. QED

Crossrefs

The following are parallel families: A000079 (2^n), A004094 (2^n reversed), A028909 (2^n sorted up), A028910 (2^n sorted down), A036447 (double and reverse), A057615 (double and sort up), A263451 (double and sort down); A000244 (3^n), A004167 (3^n reversed), A321540 (3^n sorted up), A321539 (3^n sorted down), A163632 (triple and reverse), A321542 (triple and sort up), A321541 (triple and sort down).

Programs

  • Mathematica
    NestList[FromDigits[ReverseSort[IntegerDigits[3*#]]] &, 1, 25] (* Paolo Xausa, Aug 02 2024 *)

Formula

From Chai Wah Wu, Nov 20 2018: (Start)
a(n) = 10*a(n-1) + a(n-2) - 10*a(n-3) for n > 9.
G.f.: (118800*x^9 + 8910*x^8 + 8811*x^7 + 12321*x^6 + 2439*x^5 - 78*x^4 - 11*x^3 - 22*x^2 - 7*x + 1)/((x - 1)*(x + 1)*(10*x - 1)). (End)

A045539 Multiply by 5 and reverse.

Original entry on oeis.org

1, 5, 52, 62, 13, 56, 82, 14, 7, 53, 562, 182, 19, 59, 592, 692, 643, 5123, 51652, 62852, 62413, 560213, 5601082, 1450082, 140527, 536207, 5301862, 1390562, 182596, 89219, 590644, 223592, 697111, 5555843, 51297772, 68884652, 62324443, 512226113, 5650311652
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A036447 (*2), A163632 (*3), A132064 (*4), A132078 (*6), A132114 (*7), A132113 (*8), A133361 (*9).

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          (s-> parse(cat(s[-i]$i=1..length(s))))(""||(5*a(n-1))))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Apr 09 2015
  • Mathematica
    a[n_] := a[n] = If[n==0, 1, IntegerReverse[5a[n-1]]];
    a /@ Range[0, 40] (* Jean-François Alcover, Jan 01 2021 *)

A132064 Numbers multiplied by 4 and written backwards.

Original entry on oeis.org

1, 4, 61, 442, 8671, 48643, 275491, 4691011, 44046781, 421781671, 4866217861, 44417846491, 469583176771, 4807072338781, 42155398282291, 461921395126861, 4447050855867481, 42996432430288771, 480551127927589171, 4866530171154022291, 46198061648602166491
Offset: 1

Views

Author

Rachit Agrawal (rachit_agrawal(AT)daiict.ac.in), Oct 30 2007

Keywords

Examples

			a(4) = reverse(4*a(3)) = reverse(4*reverse(4*a(2))) = reverse(4*reverse(4*reverse(4*a(1)))) = reverse(4*reverse(4*4)) = reverse(4*61) = reverse(244) = 442
		

Crossrefs

Cf. A036447 (*2), A163632 (*3), A045539 (*5), A132078 (*6), A132114 (*7), A132113 (*8), A133361 (*9).

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=1, 1,
          (s-> parse(cat(s[-i]$i=1..length(s))))(""||(4*a(n-1))))
        end:
    seq(a(n), n=1..30);  # Alois P. Heinz, Apr 09 2015
  • Mathematica
    NestList[IntegerReverse[4#]&,1,20] (* Requires Mathematica version 11 or later *) (* Harvey P. Dale, Dec 09 2017 *)

Formula

a(n) = reverse(4*a(n-1)) where a(1) = 1
Conjecture: a(n)^(1/n) tends to 10. - Vaclav Kotesovec, Jan 03 2020

Extensions

More terms from Alois P. Heinz, Apr 09 2015

A132078 Multiply previous term by 6 and reverse.

Original entry on oeis.org

1, 6, 63, 873, 8325, 5994, 46953, 817182, 2903094, 46581471, 628884972, 2389033773, 83620243341, 640064127105, 362674830483, 8982898406712, 27204409379835, 10972654622361, 66143772953856, 631327736268693, 8512167146697873, 83278108820037015, 90222029256866994
Offset: 1

Views

Author

Rachit Agrawal (rachit_agrawal(AT)daiict.ac.in), Oct 30 2007

Keywords

Examples

			a(4) = reverse(6 * a(3)) = reverse(6 * reverse(6 * a(2))) = reverse(6 * reverse( 6 * reverse(6 * a(1)))) = reverse(6 * reverse(6 * reverse(6))) = reverse(6 * 63) = 873.
		

Crossrefs

Cf. A036447 (*2), A163632 (*3), A132064 (*4), A045539 (*5), A132114 (*7), A132113 (*8), A133361 (*9).

Programs

  • Magma
    f:=func; a:=[1]; for n in [2..25] do Append(~a,f(a[n-1]));  end for; a; // Marius A. Burtea, Jan 03 2020
  • Mathematica
    Nest[Append[#,IntegerReverse[6*#[[-1]]]]&,{1},22] (* James C. McMahon, Mar 03 2025 *)

Formula

a(n) = reverse(6 * a(n-1)) where a(1) = 1.

Extensions

Name clarified and terms a(16) and beyond from Andrew Howroyd, Jan 02 2020

A132113 Multiply previous term by 8 and reverse.

Original entry on oeis.org

1, 8, 46, 863, 4096, 86723, 487396, 8619983, 46895986, 888761573, 4852900117, 63900232883, 460368102115, 296184492863, 4092495749632, 65079956993723, 487949556936025, 28845546953093, 447426573467032, 6526377852149753
Offset: 1

Views

Author

Rachit Agrawal (rachit_agrawal(AT)daiict.ac.in), Oct 31 2007

Keywords

Examples

			a(4) = reverse(8 * a(3))
= reverse(8 * reverse(8 * a(2)))
= reverse(8 * reverse(8 * reverse(8 * a(1))))
= reverse(8 * reverse(8 * reverse(8)))
= reverse(8 * reverse(8 * 8))
= reverse(8 * 46)
= reverse(368)
= 863.
		

Crossrefs

Cf. A036447 (*2), A163632 (*3), A132064 (*4), A045539 (*5), A132078 (*6), A132114 (*7), A133361 (*9).

Programs

  • Maple
    rev:=proc(n) local nn: nn:=convert(n,base,10): add(nn[j]*10^(nops(nn)-j), j = 1..nops(nn)) end proc: a[1]:=1: for n from 2 to 20 do a[n]:=rev(8*a[n-1]) end do: seq(a[n],n=1..20); # Definition corrected by Emeric Deutsch, Nov 07 2007
  • Mathematica
    NestList[IntegerReverse[8#]&,1,20] (* Harvey P. Dale, Dec 22 2018 *)

Formula

a(n) = reverse(8 * a(n-1)) where a(1) = 1.
Conjecture: a(n)^(1/n) tends to 10. - Vaclav Kotesovec, Jan 03 2020

Extensions

Definition corrected by Emeric Deutsch, Nov 07 2007
Edited by Jon E. Schoenfield, May 10 2019

A132114 Multiply previous term by 7 and reverse.

Original entry on oeis.org

1, 7, 94, 856, 2995, 56902, 413893, 1527982, 47859601, 702710533, 1373798194, 8537856169, 38139946795, 565726979662, 4367588800693, 15840612137503, 125269482488011, 770614773688678, 6470285143034935, 54544210069919254
Offset: 1

Views

Author

Rachit Agrawal (rachit_agrawal(AT)daiict.ac.in), Oct 31 2007

Keywords

Examples

			a(4) = reverse(7 * a(3)) = reverse(7 * reverse(7 * a(2))) = reverse(7 * reverse(7 * reverse(7 * a(1)))) = reverse(7 * reverse(7 * reverse(7))) = reverse(7*94) = 856.
		

Crossrefs

Cf. A036447 (*2), A163632 (*3), A132064 (*4), A045539 (*5), A132078 (*6), A132113 (*8), A133361 (*9).

Programs

  • Magma
    f:=func; a:=[1]; for n in [2..20] do Append(~a,f(a[n-1]));  end for; a; // Marius A. Burtea, Jan 03 2020
  • PARI
    seq(n)={my(a=vector(n)); a[1]=1; for(n=2, #a, a[n]=fromdigits(Vecrev(digits(a[n-1]*7)))); a} \\ Andrew Howroyd, Jan 02 2020
    

Formula

a(n) = reverse(7 * a(n-1)) with a(1) = 1.

Extensions

Name edited by Andrew Howroyd, Jan 02 2020

A133361 Multiply by 9 and reverse.

Original entry on oeis.org

1, 9, 18, 261, 9432, 88848, 236997, 3792312, 80803143, 782822727, 3454045407, 36680468013, 711212421033, 7929871190046, 41401704886317, 358679343516273, 7546461904118223, 70046073175181976, 487736675856414036, 4236277072800369834, 60582330255639462183
Offset: 1

Views

Author

Rachit Agrawal (rachit_agrawal(AT)daiict.ac.in), Oct 26 2007

Keywords

Crossrefs

Cf. A036447 (*2), A163632 (*3), A132064 (*4), A045539 (*5), A132078 (*6), A132114 (*7), A132113 (*8).

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=1, 1,
          (s-> parse(cat(s[-i]$i=1..length(s))))(""||(9*a(n-1))))
        end:
    seq(a(n), n=1..25);  # Alois P. Heinz, Apr 09 2015
  • Mathematica
    a[n_] := a[n] = If[n==1, 1, IntegerReverse[9a[n-1]]];
    a /@ Range[40] (* Jean-François Alcover, Jan 01 2021 *)

Formula

a(n) = reverse(9*a(n-1)) where a(1) = 1.
Conjecture: a(n)^(1/n) tends to 10. - Vaclav Kotesovec, Jan 03 2020

Extensions

More terms from Alois P. Heinz, Apr 09 2015

A371880 Smallest number reachable starting from 1 and taking n steps either doubling or doubling+reversing.

Original entry on oeis.org

1, 2, 4, 8, 16, 23, 46, 29, 58, 71, 34, 68, 37, 47, 49, 89, 79, 59, 19, 38, 67, 35, 7, 14, 28, 56, 13, 26, 25, 5, 1, 2, 4, 8, 16, 23, 46, 29, 58, 17, 34, 68, 37, 47, 49, 89, 79, 59, 19, 38, 67, 35, 7, 14, 28, 56, 13, 26, 25, 5, 1, 2, 4, 8, 16, 23, 46, 29, 58, 17
Offset: 0

Views

Author

Bryle Morga, Apr 14 2024

Keywords

Comments

At each step you are allowed to either double x -> 2*x or double and reverse x -> R(2*x), where R(x) = A004086(x) is decimal digit reversal.
From Michael S. Branicky, Apr 14 2024: (Start)
Since a(30) = 1 = a(0), a(n) <= a(n-30) for n >= 30. a(39) <= 17 < a(9) = 71 is the first term that strictly lowers the bound. Is it eventually periodic?
Under the map, a term k has preimage k/2 if k is even plus terms of the form R(k)*10^i/2 for i > 1 and for i=0 if R(k) is even. (End)
The condition above implies a(i+30k) is nonincreasing for k >= 0 for all i in 0..29, hence it is periodic (with period being a factor of 30). When does the periodic part of the sequence begin? - Bryle Morga, Apr 15 2024
From David A. Corneth, Apr 15 2024: (Start)
a(n) == 2^n (mod 9).
Because of this, all values 1 <= a(n) <= 9 have a(n + 30*k) = a(n). That is a(30*k) = 1, a(30*k + 1) = 2, a(30*k + 2) = 4, a(30*k + 3) = 8, a(30*k + 22) = 7, a(30*k + 29) = 5, for k >= 0. (End)
Ultimately periodic sequence of period 30 with a(k+30)=a(k) for k != 9. - David Wilson, Apr 19 2024

Examples

			a(20) = 67 and here is the 20-move combination that reaches 67: 1, 2, 4, 8, 61, 221, 244, 884, 8671, 17342, 48643, 97286, 275491, 289055, 11875, 23750, 47500, 95000, 190000, 380000, 67.
a(21) = 35 and here is the 21-move combination that reaches 35: 1, 2, 4, 8, 61, 221, 244, 884, 8671, 17342, 48643, 97286, 275491, 289055, 11875, 23750, 47500, 95000, 91, 281, 265, 35.
a(30) = 1 using the path: 1, 2, 4, 8, 61, 122, 442, 488, 976, 2591, 2815, 365, 37, 47, 49, 98, 196, 392, 487, 479, 859, 1718, 3436, 2786, 2755, 155, 13, 26, 25, 5, 1. - _Michael S. Branicky_, Apr 14 2024
		

Crossrefs

Programs

  • PARI
    \\ See PARI link
  • Python
    def f(k, d):
          if d == 0:
                return k
          else:
                return min(f(2*k, d-1), f(int(str(2*k)[::-1]), d - 1))
    def a(n):
          return f(1, n)
    for n in range(25):
          print(a(n))
    
  • Python
    from itertools import islice
    def reverse(n): return int(str(n)[::-1])
    def agen(): # generator of terms
        reach = {1}
        while True:
            yield min(reach)
            newreach = set()
            for q in reach: newreach.update([2*q, reverse(2*q)])
            reach = newreach
    print(list(islice(agen(), 28))) # Michael S. Branicky, Apr 14 2024
    

Formula

a(n) = f(1, n) where f(k, 0) = k and f(k, n) = min(f(2*k, n-1), f(R(2*k), n-1)).
a(30k) = 1 for k >= 0. - Michael S. Branicky, Apr 14 2024
a(9) = 71. For k != 9, a(k) is the minimum of the positive residues mod 99 of 2^k and 10*2^k. - David Wilson, Apr 19 2024

Extensions

a(27)-a(34) from Michael S. Branicky, Apr 14 2024
a(35) and beyond from David Wilson, Apr 19 2024
Previous Showing 11-20 of 20 results.