cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 72 results. Next

A261693 Irregular triangle read by rows in which row n lists the positive odd numbers in decreasing order starting with 2^n - 1. T(0, 1) = 0 and T(n, k) for n >= 1, 1 <= k <= 2^(n-1).

Original entry on oeis.org

0, 1, 3, 1, 7, 5, 3, 1, 15, 13, 11, 9, 7, 5, 3, 1, 31, 29, 27, 25, 23, 21, 19, 17, 15, 13, 11, 9, 7, 5, 3, 1, 63, 61, 59, 57, 55, 53, 51, 49, 47, 45, 43, 41, 39, 37, 35, 33, 31, 29, 27, 25, 23, 21, 19, 17, 15, 13, 11, 9, 7, 5, 3, 1, 127, 125, 123, 121, 119, 117, 115, 113, 111, 109, 107, 105, 103, 101, 99, 97, 95, 93
Offset: 0

Views

Author

Omar E. Pol, Sep 25 2015

Keywords

Comments

Also the first differences of A261692.
Number of cells turned ON at n-th stage of the cellular automaton of A261692.
This irregular triangle A (instead of T) appears also in the linearization of the following product of Chebyshev T polynomials (A053120): PrT(n) := Product_{j=1..n} T(2^j, x) = (1/2^(n-1))*Sum_{k=1..2^(n-1)} T(2*A(n, k), x), for n >= 1. Proof via 2*T(n, x)*T(m, x) = T(n+m, x) + T(|n-m|, x). - Wolfdieter Lang, Oct 26 2019

Examples

			With the terms written as an irregular triangle T in which row lengths are the terms of A011782 the sequence begins:
0;
1;
3, 1;
7, 5, 3, 1;
15, 13, 11, 9, 7, 5, 3, 1;
31, 29, 27, 25, 23, 21, 19, 17, 15, 13, 11, 9, 7, 5, 3, 1;
...
-------------------------------------------------------------------------------
From _Wolfdieter Lang_, Oct 26 2019: (Start)
Chebyshev T(2^j)-products (the argument x is here omitted):
n = 1: T(2) = (2^0)*T(2*1),
n = 2: T(2)*T(4) = (1/2)*(T(2*3) + T(2*1)) = (T(6) + T(2))/2,
n = 3: T(2)*T(4)*T(8) =  (1/2^2)*(T(2*7) + T(2*5) + T(2*3) + T(2*1))
       = (T(14) + T(10) + T(6) + T(2))/4.
... (End)
		

Crossrefs

Column 1 is A000225. Row sums give A000302, n >= 1.

Programs

  • Maple
    A261693 := n -> Bits:-Nor(2*n, 2*n):
    seq(A261693(n), n=0..81); # Peter Luschny, Sep 23 2019
  • Mathematica
    Table[Reverse[2 Range[2^(n - 1)] - 1], {n, 0, 7}] /. {} -> 0 // Flatten (* Michael De Vlieger, Oct 05 2015 *)
  • PARI
    tabf(nn) = {for (n=0, nn, print1(n, ":"); for (k=1, 2^(n-2), print1(2^(n-1) - 2*k + 1, ", ");); print(););} \\ Michel Marcus, Oct 27 2015

Formula

T(n, k) = 2^n + 1 - 2*k, n >= 1, 1 <= k <= 2^(n-1), and T(0, 0) = 0.
As a sequence: a(n) = A262621(n)/4, n >= 1, and a(0) = 0.

Extensions

Corrections by Wolfdieter Lang, Nov 15 2019

A329637 Square array A(n, k) = A329644(prime(n)^k), read by falling antidiagonals: (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), ...

Original entry on oeis.org

1, 1, 1, 4, -1, 1, 0, 4, -5, 1, 24, -16, 4, -13, 1, -8, 40, -48, 4, -29, 1, 104, -88, 72, -112, 4, -61, 1, -48, 184, -248, 136, -240, 4, -125, 1, 352, -400, 344, -568, 264, -496, 4, -253, 1, 80, 544, -1104, 664, -1208, 520, -1008, 4, -509, 1, 1424, -784, 928, -2512, 1304, -2488, 1032, -2032, 4, -1021, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 22 2019

Keywords

Examples

			The top left corner of the array:
   n   p_n |k=1,     2, 3,      4,     5,      6,     7,       8,      9,      10
  ---------+----------------------------------------------------------------------
   1 ->  2 |  1,     1, 4,      0,    24,     -8,   104,     -48,    352,      80,
   2 ->  3 |  1,    -1, 4,    -16,    40,    -88,   184,    -400,    544,    -784,
   3 ->  5 |  1,    -5, 4,    -48,    72,   -248,   344,   -1104,    928,   -2512,
   4 ->  7 |  1,   -13, 4,   -112,   136,   -568,   664,   -2512,   1696,   -5968,
   5 -> 11 |  1,   -29, 4,   -240,   264,  -1208,  1304,   -5328,   3232,  -12880,
   6 -> 13 |  1,   -61, 4,   -496,   520,  -2488,  2584,  -10960,   6304,  -26704,
   7 -> 17 |  1,  -125, 4,  -1008,  1032,  -5048,  5144,  -22224,  12448,  -54352,
   8 -> 19 |  1,  -253, 4,  -2032,  2056, -10168, 10264,  -44752,  24736, -109648,
   9 -> 23 |  1,  -509, 4,  -4080,  4104, -20408, 20504,  -89808,  49312, -220240,
  10 -> 29 |  1, -1021, 4,  -8176,  8200, -40888, 40984, -179920,  98464, -441424,
  11 -> 31 |  1, -2045, 4, -16368, 16392, -81848, 81944, -360144, 196768, -883792,
		

Crossrefs

Rows 1-2: A329891, A329892 (from n>=1).
Column 1: A000012, Column 2: -A036563(n) (from n>=1), Column 3: A010709.

Programs

  • PARI
    up_to = 105;
    A329890(n) = if(1==n,1,sigma((2^n)-1)-sigma((2^(n-1))-1));
    A329637sq(n,k) = ((2^(n+k-1)) - (((2^n)-1) * A329890(k)));
    A329637list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A329637sq(col,(a-(col-1))))); (v); };
    v329637 = A329637list(up_to);
    A329637(n) = v329637[n];

Formula

A(n, k) = A329644(A182944(n, k)).
A(n, k) = A000079(n+k-1) - (A000225(n) * A329890(k)).

A131437 (A000012 * A131436) + (A131436 * A000012) - A000012.

Original entry on oeis.org

1, 3, 5, 7, 9, 13, 15, 17, 21, 29, 31, 33, 37, 45, 61, 63, 65, 69, 77, 93, 125, 127, 129, 133, 141, 157, 189, 253, 255, 257, 261, 269, 285, 317, 381, 509, 511, 513, 517, 525, 541, 573, 637, 765, 1021, 1023, 1025, 1029, 1037, 1053, 1085, 1149, 1277, 1533, 2045
Offset: 1

Views

Author

Gary W. Adamson, Jul 11 2007

Keywords

Comments

Left column = 2^n - 1; right border = A036563, 2^(n+1) - 3: (1, 5, 13, 29, 61, 125, ...). Row sums = A131438: (1, 8, 29, 82, 207, 492, 1129, ...).

Examples

			First few rows of the triangle are:
1;
3, 5;
7, 9, 13;
15, 17, 21, 29;
31, 33, 37, 45, 61;
63, 65, 69, 77, 93, 125;
...
		

Crossrefs

Programs

Formula

(A000012 * A131436) + (A131436 * A000012) - A000012; as infinite lower triangular matrices.

Extensions

Corrected by R. J. Mathar, Sep 24 2011

A220087 a(n) = 2^n - 27.

Original entry on oeis.org

-26, -25, -23, -19, -11, 5, 37, 101, 229, 485, 997, 2021, 4069, 8165, 16357, 32741, 65509, 131045, 262117, 524261, 1048549, 2097125, 4194277, 8388581, 16777189, 33554405, 67108837, 134217701, 268435429, 536870885, 1073741797, 2147483621, 4294967269
Offset: 0

Views

Author

Andreas Rieber, Dec 04 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2^n - 27, {n, 0, 40}] (* T. D. Noe, Dec 04 2012 *)
    LinearRecurrence[{3,-2},{-26,-25},40] (* Harvey P. Dale, May 17 2018 *)

Formula

From Chai Wah Wu, Jan 17 2020: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) for n > 1.
G.f.: (53*x - 26)/((x - 1)*(2*x - 1)). (End)
From Elmo R. Oliveira, Nov 08 2023: (Start)
a(n) = 2*a(n-1) + 27 with a(0) = -26.
E.g.f.: exp(2*x) - 27*exp(x). (End)

A226618 Irregular array read by rows in which row n lists the positive integers k in ascending order for which 1 is in a primitive cycle of n positive integers under iteration by the Collatz-like 3x+k function.

Original entry on oeis.org

1, 5, 13, 29, 11, 61, 17, 125, 253, 509, 145, 203, 1021, 43, 2045, 55, 4093, 355, 1169, 8189, 137, 3275, 16381, 1129, 32765, 1007, 5957, 9361, 65533, 131069, 97, 52427, 262141, 643, 74897, 524285, 41, 1048573, 553, 28727, 110375, 2097149, 281, 673, 2075, 9731, 34663
Offset: 1

Views

Author

Geoffrey H. Morley, Jul 02 2013

Keywords

Comments

A cycle is called primitive if its elements are not a common multiple of the elements of another cycle.
The 3x+k function T_k is defined by T_k(x) = x/2 if x is even, (3x+k)/2 if x is odd, where k is odd.
For primitive cycles, GCD(k,6)=1.

Examples

			The irregular array starts:
1;
5;
13;
29;
11, 61;
17, 125; ...
Row 1 is empty.
		

Crossrefs

The first element in row n is A226616(n), and the last is A036563(n) = 2^n-3.

A226619 Irregular array read by rows in which row n lists the integers k, in ascending order, for which there is a primitive cycle of n positive integers under iteration by the Collatz-like 3x+k function.

Original entry on oeis.org

-1, 1, 1, -1, 5, -11, 7, 13, -49, 5, 23, 29, -179, -17, 11, 37, 55, 61, -601, -115, 17, 47, 101, 119, 125, -1931, -473, 13, 25, 35, 175, 229, 247, 253, -6049, -1675, -217, -31, 97, 269, 431, 485, 503, 509, -18659, -5537, -1163, -791, 59, 71, 145, 203, 295, 781, 943, 997, 1015, 1021
Offset: 1

Views

Author

Geoffrey H. Morley, Jul 02 2013

Keywords

Comments

A cycle is called primitive if its elements are not a common multiple of the elements of another cycle.
The 3x+k function T_k is defined by T_k(x) = x/2 if x is even, (3x+k)/2 if x is odd, where k is odd.
For primitive cycles, GCD(k,6)=1.
We associate the cycle {0} with k = A226606(2) = 1.
For n>1 the first term of row n is 2^n-3^(n-1), and the last term is A036563(n) = 2^n-3.

Examples

			The irregular array starts:
-1, 1;
1;
-1, 5;
-11, 7, 13;
-49, 5, 23, 29; ...
		

Crossrefs

A238303 Triangle T(n,k), 0<=k<=n, read by rows given by T(n,0) = 1, T(n,k) = 2 if k>0.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

Philippe Deléham, Feb 24 2014

Keywords

Comments

Row sums are A005408(n).
Diagonals sums are A109613(n).
Sum_{k=0..n} T(n,k)*x^k = A033999(n), A000012(n), A005408(n), A036563(n+2), A058481(n+1), A083584(n), A137410(n), A233325(n), A233326(n), A233328(n), A211866(n+1), A165402(n+1) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 respectively.
Sum_{k=0..n} T(n,k)*x^(n-k) = A151575(n), A000012(n), A040000(n), A005408(n), A033484(n), A048473(n), A020989(n), A057651(n), A061801(n), A238275(n), A238276(n), A138894(n), A090843(n), A199023(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 respectively.
Sum_{k=0..n} T(n,k)^x = A000027(n+1), A005408(n), A016813(n), A017077(n) for x = 0, 1, 2, 3 respectively.
Sum_{k=0..n} k*T(n,k) = A002378(n).
Sum_{k=0..n} A000045(k)*T(n,k) = A019274(n+2).
Sum_{k=0..n} A000142(k)*T(n,k) = A066237(n+1).

Examples

			Triangle begins:
1;
1, 2;
1, 2, 2;
1, 2, 2, 2;
1, 2, 2, 2, 2;
1, 2, 2, 2, 2, 2;
1, 2, 2, 2, 2, 2, 2;
1, 2, 2, 2, 2, 2, 2, 2;
1, 2, 2, 2, 2, 2, 2, 2, 2;
1, 2, 2, 2, 2, 2, 2, 2, 2, 2;
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2;
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2;
...
		

Crossrefs

Cf. Diagonals: A040000.
Cf. Columns: A000012, A007395.
First differences of A001614.

Programs

Formula

T(n,0) = A000012(n) = 1, T(n+k,k) = A007395(n) = 2 for k>0.

Extensions

Data section extended to a(104) by Antti Karttunen, Jan 19 2025

A290113 Decimal representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 643", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 3, 5, 13, 29, 61, 125, 253, 509, 1021, 2045, 4093, 8189, 16381, 32765, 65533, 131069, 262141, 524285, 1048573, 2097149, 4194301, 8388605, 16777213, 33554429, 67108861, 134217725, 268435453, 536870909, 1073741821, 2147483645, 4294967293, 8589934589
Offset: 0

Views

Author

Robert Price, Jul 19 2017

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Essentially the same as A091270.

Programs

  • Mathematica
    CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
    code = 643; stages = 128;
    rule = IntegerDigits[code, 2, 10];
    g = 2 * stages + 1; (* Maximum size of grid *)
    a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
    ca = a;
    ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
    PrependTo[ca, a];
    (* Trim full grid to reflect growth by one cell at each stage *)
    k = (Length[ca[[1]]] + 1)/2;
    ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
    Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]

Formula

For n>1, a(n) = 2^(n+1)-3.
a(n) = A036563(n+1) for n > 1. - Georg Fischer, Oct 30 2018
From Chai Wah Wu, Apr 02 2024: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) for n > 3.
G.f.: (4*x^3 - 2*x^2 + 1)/(2*x^2 - 3*x + 1). (End)

A331105 T(n,k) = -k*(k+1)/2 mod 2^n; triangle T(n,k), n>=0, 0<=k<=2^n-1, read by rows.

Original entry on oeis.org

0, 0, 1, 0, 3, 1, 2, 0, 7, 5, 2, 6, 1, 3, 4, 0, 15, 13, 10, 6, 1, 11, 4, 12, 3, 9, 14, 2, 5, 7, 8, 0, 31, 29, 26, 22, 17, 11, 4, 28, 19, 9, 30, 18, 5, 23, 8, 24, 7, 21, 2, 14, 25, 3, 12, 20, 27, 1, 6, 10, 13, 15, 16, 0, 63, 61, 58, 54, 49, 43, 36, 28, 19, 9
Offset: 0

Views

Author

Alois P. Heinz, Jan 09 2020

Keywords

Comments

Row n is a permutation of {0, 1, ..., A000225(n)}.

Examples

			Triangle T(n,k) begins:
  0;
  0,  1;
  0,  3,  1,  2;
  0,  7,  5,  2, 6, 1,  3, 4;
  0, 15, 13, 10, 6, 1, 11, 4, 12, 3, 9, 14, 2, 5, 7, 8;
  ...
		

Crossrefs

Columns k=0-2 give: A000004, A000225, A036563 (for n>1).
Row sums give A006516.
Row lengths give A000079.
T(n,n) gives A014833 (for n>0).
T(n,2^n-1) gives A131577.

Programs

  • Maple
    T:= n-> (p-> seq(modp(-k*(k+1)/2, p), k=0..p-1))(2^n):
    seq(T(n), n=0..6);
    # second Maple program:
    T:= proc(n, k) option remember;
          `if`(k=0, 0, T(n, k-1)-k mod 2^n)
        end:
    seq(seq(T(n, k), k=0..2^n-1), n=0..6);
  • Mathematica
    T[n_, k_] := T[n, k] = If[k == 0, 0, Mod[T[n, k - 1] - k, 2^n]];
    Table[Table[T[n, k], {k, 0, 2^n - 1}], {n, 0, 6}] // Flatten (* Jean-François Alcover, Mar 28 2022, after Alois P. Heinz *)

A382674 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] exp(x+y) / (exp(x) + exp(y) - exp(x+y))^4.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 13, 13, 1, 1, 29, 77, 29, 1, 1, 61, 325, 325, 61, 1, 1, 125, 1181, 2357, 1181, 125, 1, 1, 253, 3973, 13621, 13621, 3973, 253, 1, 1, 509, 12797, 69269, 118061, 69269, 12797, 509, 1, 1, 1021, 40165, 326005, 862261, 862261, 326005, 40165, 1021, 1
Offset: 0

Views

Author

Seiichi Manyama, Apr 03 2025

Keywords

Examples

			Square array begins:
  1,   1,    1,     1,      1,       1, ...
  1,   5,   13,    29,     61,     125, ...
  1,  13,   77,   325,   1181,    3973, ...
  1,  29,  325,  2357,  13621,   69269, ...
  1,  61, 1181, 13621, 118061,  862261, ...
  1, 125, 3973, 69269, 862261, 8712245, ...
  ...
		

Crossrefs

Columns k=0..2 give A000012, A036563(n+2), A382677.
Main diagonal gives A382678.
Cf. A382736.

Programs

  • PARI
    a(n, k) = sum(j=0, min(n, k), j!^2*binomial(j+3, 3)*stirling(n+1, j+1, 2)*stirling(k+1, j+1, 2));

Formula

E.g.f.: exp(x+y) / (exp(x) + exp(y) - exp(x+y))^4.
A(n,k) = A(k,n).
A(n,k) = Sum_{j=0..min(n,k)} (j!)^2 * binomial(j+3,3) * Stirling2(n+1,j+1) * Stirling2(k+1,j+1).
Previous Showing 31-40 of 72 results. Next