A127488
a(n) = (n^2)!/(2*(n!)).
Original entry on oeis.org
6, 30240, 435891456000, 64630041847212441600000, 258328699159653623241666283438080000000
Offset: 2
Cf.
A000142,
A001044,
A000442,
A036740,
A010050,
A009445,
A134366,
A134367,
A134368,
A134369,
A134371,
A134372,
A134373,
A134374,
A134374
A181760
a(n) = (n!)(n!-1)(n!-2)...(n!-n+1).
Original entry on oeis.org
1, 1, 2, 120, 255024, 22869362880, 136434451994755200, 82262786502445667337542400, 6980114960816118346901632738195814400, 109099864394915605737486658299863377337267988480000, 395935956167605557454071116707328675502625329271836386079338496000
Offset: 0
-
a:= n-> mul(n!-k, k=0..n-1):
seq(a(n), n=0..10); # Alois P. Heinz, Jan 17 2011
-
Table[FactorialPower[n!,n],{n,0,10}]
A213065
a(n) = n^n! - n!^n.
Original entry on oeis.org
-1, 0, 0, 513, 281474976378880, 752316384526264005099991383822237233803945956334136013765601092018187046026142190625
Offset: 0
A336249
a(n) = (n!)^n * Sum_{k=0..n} 1 / ((k!)^n * (n-k)!).
Original entry on oeis.org
1, 2, 7, 172, 79745, 1375363126, 1445639634946657, 136511607703654177490168, 1597074319746489837872943936307201, 3049096207067719868011671739966873049880826186, 1209808678412717193052533393657339738066086793611743000000001
Offset: 0
-
Table[(n!)^n Sum[1/((k!)^n (n - k)!), {k, 0, n}], {n, 0, 10}]
Table[(n!)^n SeriesCoefficient[Exp[x] Sum[x^k/(k!)^n, {k, 0, n}], {x, 0, n}], {n, 0, 10}]
-
a(n) = (n!)^n * sum(k=0, n, 1 / ((k!)^n * (n-k)!)); \\ Michel Marcus, Jul 14 2020
A336250
a(n) = (n!)^n * Sum_{k=1..n} (-1)^(k+1) / k^n.
Original entry on oeis.org
0, 1, 3, 197, 313840, 24191662624, 137300308036448256, 81994640912971156525105152, 6958651785463110878359050928999366656, 108902755985567407887534498777329973193771818418176, 395560567918154447056086270973712023435510589158871531520000000000
Offset: 0
-
Table[(n!)^n Sum[(-1)^(k + 1)/k^n, {k, 1, n}], {n, 0, 10}]
Table[(n!)^n SeriesCoefficient[-PolyLog[n, -x]/(1 - x), {x, 0, n}], {n, 0, 10}]
-
a(n) = (n!)^n * sum(k=1, n, (-1)^(k+1) / k^n); \\ Michel Marcus, Jul 14 2020
A360213
Number of distinct stable marriage problem instances up to gender exchange.
Original entry on oeis.org
1, 10, 23436, 55037822976, 309586821132441600000, 9704204980882671472665034752000000, 3411909590124519376908837990487929799751761920000000, 24394862766922609598505096548473341484170343775734092352694570188800000000
Offset: 1
For order 2 we have A185141(2) = 16 instances that can be arranged in a 4 X 4 square with A000217(4) = (4 * 5) / 2 = 10 distinct instances up to gender exchange in the upper triangular region including the diagonal. So a(2) = 10.
Original entry on oeis.org
1, 2, 49, 39304, 1908029761, 8831763846882976, 5602661527604399327549089, 659308109505417338723017914068713088, 18666765602783048904120522995911258148623099215361, 159740893387079678500933964995221201596055121928224632284394525184
Offset: 0
When n = 2, i.e., the domain is [2] = {1, 2}, both P(x, y, 1) and P(x, y, 2) represent partial injective functions from [2] to [2]. Since there are seven such functions, a(n) = 7^2 = 49.
A379577
a(n) = (n!)^n + n^n.
Original entry on oeis.org
2, 2, 8, 243, 332032, 24883203125, 139314069504046656, 82606411253903523840823543, 6984964247141514123629140377616777216, 109110688415571316480344899355894085582848387420489, 395940866122425193243875570782668457763038822400000000010000000000, 409933016554924328182440935903164918932547530146724293451448320000000000285311670611
Offset: 0
n = 3: a(3) = (3!)^3 + 3^3 = 243.
Comments