cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A377766 Even numbers whose sum of proper (or aliquot) divisors is a prime.

Original entry on oeis.org

4, 8, 32, 50, 98, 128, 242, 324, 338, 392, 722, 784, 800, 1058, 1250, 1444, 2304, 2312, 2450, 2704, 2738, 3600, 3872, 5408, 5476, 5618, 6272, 6728, 7442, 7688, 8192, 9248, 11552, 12482, 12800, 14400, 14884, 15488, 15842, 16562, 16900, 16928, 17672, 18050, 19208, 21632, 21904, 22500, 23762, 25088
Offset: 1

Views

Author

Ophir Spector, Nov 06 2024

Keywords

Comments

Even terms of A037020.
Numbers from A088827 (2n^2 or 4n^2) are the only aliquot sum transition from even to odd.

Examples

			The aliquot divisors of 32 are 1, 2, 4, 8 and 16, whose sum is 31, a prime, so 32 is a term.
		

Crossrefs

Intersection of A005843 and A037020.
Cf. A088827.

Programs

  • Mathematica
    Select[2Range[13000],PrimeQ[DivisorSigma[1,#]-#] &] (* Stefano Spezia, Nov 08 2024 *)
  • PARI
    is_a377766(n) = !(n%2) && isprime(sigma(n)-n) \\ Hugo Pfoertner, Nov 07 2024

A177891 Numbers n such that sum of proper (or aliquot) divisors of n is a semiprime.

Original entry on oeis.org

6, 9, 14, 15, 16, 18, 20, 22, 25, 33, 36, 38, 45, 46, 51, 52, 62, 68, 70, 72, 75, 80, 86, 87, 91, 93, 95, 99, 104, 105, 110, 116, 117, 118, 119, 130, 136, 141, 142, 143, 144, 145, 148, 154, 158, 159, 160, 162, 165, 166, 169, 183, 195, 196, 200
Offset: 1

Views

Author

Jonathan Vos Post, Dec 14 2010

Keywords

Comments

This is to A037020 as semiprimes A001358 are to primes A000040. The first four values are themselves semiprime.
Contains k^2 if k is in A005383. - Robert Israel, Feb 16 2020

Examples

			a(2) = 9 because the aliquot divisors of 9 are 1 and 3, whose sum is 4 = 2*2, semiprime.
a(5) = 16 because the aliquot divisors of 16 are 1, 2, 4, and 8, whose sum is 15 = 3*5, semiprime.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) uses numtheory;
      bigomega(sigma(n)-n) = 2
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Feb 16 2020
  • Mathematica
    semiPrimeQ[x_] := Plus @@ Last /@ FactorInteger@ x == 2; fQ[n_] := semiPrimeQ[ DivisorSigma[1, n] - n]; Select[ Range@ 200, fQ]
  • PARI
    isok(n) = bigomega(sigma(n)-n) == 2; \\ Michel Marcus, Apr 05 2015

Formula

A001065(a(n)) is in A001358.

A201880 Numbers n such that sigma_2(n) - n^2 is prime.

Original entry on oeis.org

4, 18, 21, 33, 39, 72, 93, 99, 100, 159, 171, 177, 189, 207, 213, 231, 245, 249, 261, 275, 291, 297, 303, 333, 338, 357, 369, 381, 399, 400, 453, 471, 475, 477, 484, 495, 537, 539, 543, 561, 609, 633, 648, 657, 669, 681, 711, 717, 783, 801, 833, 861, 909, 927
Offset: 1

Views

Author

Michel Lagneau, Dec 06 2011

Keywords

Comments

Numbers n such that sum of the squares of the proper (or aliquot) divisors of n is a prime number.

Examples

			a(3)=21 because the aliquot divisors of 21 are 1, 3, 7, the sum of whose squares is 1^2 + 3^2 + 7^2 = 59, prime.
		

Crossrefs

Programs

  • Maple
    A067558 := proc(n)
        numtheory[sigma][2](n)-n^2 ;
    end proc:
    isA201880 := proc(n)
        isprime(A067558(n)) ;
    end proc:
    for n from 1 to 1000 do
        if isA201880(n) then
            printf("%d,",n);
        end if;
    end do: # R. J. Mathar, Dec 07 2011
  • Mathematica
    Select[Range[400], PrimeQ[DivisorSigma[2, #]-#^2]&]
  • PARI
    is(n)=isprime(sigma(n,2)-n^2) \\ Charles R Greathouse IV, Dec 06 2011

Formula

{n: A067558(n) in A000040} - R. J. Mathar, Dec 07 2011

A277794 Numbers k such that the sum of proper divisors of k is a prime, and the sum of the numbers less than k that do not divide k is also a prime.

Original entry on oeis.org

4, 21, 85, 129, 201, 237, 324, 325, 517, 549, 669, 837, 865, 1081, 1137, 1161, 1165, 1309, 1389, 1677, 1765, 2169, 2233, 2304, 2305, 2469, 2709, 2737, 2761, 3265, 3297, 3745, 3961, 4161, 4285, 4693, 4705, 4741, 4989, 5061, 5221, 5349, 5817, 5949, 6249, 6457, 6517, 6685, 6789, 6813, 6853, 6921
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 31 2016

Keywords

Comments

Intersection of A037020 and A200981.
Numbers k such that A000005(A001065(k)) = A000005(A024816(k)) = 2 or A000005(A000203(k) - k) = A000005(A000217(k) - A000203(k)) = 2.
All terms are composite (A002808).

Examples

			21 is in the sequence because 21 has three proper divisors {1, 3, 7}, and therefore seventeen non-divisors {2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, so the sum of proper divisors is 1 + 3 + 7 = 11 (which is prime) and the sum of non-divisors is 2 + 4 + 5 + 6 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20 = 199 (which is also prime).
22 is not in the sequence because its three proper divisors {1, 2, 11} add up to 14, which is composite.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local t; t:= numtheory:-sigma(n) - n; isprime(t) and isprime(n*(n-1)/2 - t) end proc:
    select(f, [$1..10^4]); # Robert Israel, Nov 10 2016
  • Mathematica
    Select[Range[7000], DivisorSigma[0, #1 ((#1 + 1)/2) - DivisorSigma[1, #1]] == 2 && DivisorSigma[0, DivisorSigma[1, #1] - #1] == 2 & ]

A290841 a(n) is the least number k such that the sum of the n-th powers of the proper divisors of k is a prime number.

Original entry on oeis.org

4, 4, 8, 4, 115, 33, 119, 4, 8, 18, 35, 15, 21, 177, 565, 4, 21, 501, 155, 275, 175, 72, 63, 21, 161, 207, 50, 100, 415, 393, 493, 453, 1250, 33, 75, 15, 85, 777, 655, 351, 649, 833, 327, 219, 1727, 123, 57, 15, 21, 357, 183, 1113, 50, 87, 57, 135, 831, 291, 341, 196, 175, 249, 2107, 783, 57, 927, 800, 39, 209
Offset: 1

Views

Author

Altug Alkan, Aug 12 2017

Keywords

Comments

Corresponding primes are 3, 5, 73, 17, 6439469, 1772291, 411162217, 257, ...
a(n) = 4 if and only if 2^n + 1 is a Fermat prime (A019434).

Examples

			a(5) = 115 because 1^5 + 5^5 + 23^5 = 6439469 is prime and 115 is the smallest number with this property.
		

Crossrefs

Programs

  • Mathematica
    Table[SelectFirst[Range[10^4], PrimeQ[DivisorSigma[n, #] - #^n] &], {n, 69}] (* Michael De Vlieger, Aug 14 2017 *)
  • PARI
    a(n) = {my(k=1); while(!isprime(sigma(k,n)-k^n), k++); k;}

A306490 Numbers k such that sigma(k) - k - 2 is prime.

Original entry on oeis.org

8, 9, 15, 16, 18, 27, 32, 33, 35, 36, 45, 50, 51, 64, 65, 75, 77, 87, 91, 95, 98, 119, 123, 125, 135, 143, 144, 147, 153, 161, 162, 175, 177, 185, 195, 200, 207, 209, 213, 215, 217, 221, 231, 247, 259, 261, 273, 285, 287, 297, 303, 315, 321
Offset: 1

Views

Author

Jan Koornstra, Feb 19 2019

Keywords

Comments

Maple and Mathematica programs adapted from A085842.

Examples

			The divisors of 8 are {1, 2, 4, 8}. sigma(8) - 8 - 2 = 5, which is prime.
		

Crossrefs

Programs

  • GAP
    Filtered([2..330],k->IsPrime(Sigma(k)-k-2)); # Muniru A Asiru, Feb 24 2019
  • Maple
    with(numtheory): b := []: for n from 3 to 2000 do t1 := divisors(n); t2 := convert(t1, list); t3 := add(t2[i], i=1..nops(t2)); if isprime(t3-2-n) then b := [op(b), n]; fi; od: b;
  • Mathematica
    f[n_]:=Plus@@Divisors[n]-n-2; lst={}; Do[a=f[n]; If[PrimeQ[a], AppendTo[lst, n]], {n, 7!}]; lst
    Select[Range[2, 500], PrimeQ[DivisorSigma[1, #] - # - 2] &] (* Vaclav Kotesovec, Feb 23 2019 *)
  • PARI
    isok(n) = isprime(sigma(n) - n - 2); \\ Michel Marcus, Feb 23 2019
    

A306492 Numbers k such that sigma(k) - 3k is prime.

Original entry on oeis.org

3600, 17424, 22500, 32400, 72900, 291600, 345744, 360000, 476100, 518400, 562500, 656100, 685584, 756900, 1040400, 1382976, 1411344, 1742400, 1904400, 1988100, 2073600, 2250000, 2340900, 2624400, 3027600, 3111696, 4161600, 4284900, 5760000, 6051600, 6170256, 6200100, 6969600
Offset: 1

Views

Author

Jan Koornstra, Feb 19 2019

Keywords

Examples

			The divisors of 3600 are {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 30, 36, 40, 45, 48, 50, 60, 72, 75, 80, 90, 100, 120, 144, 150, 180, 200, 225, 240, 300, 360, 400, 450, 600, 720, 900, 1200, 1800, 3600}. sigma(3600) - 3 * 3600 = 12493 - 10800 = 1693, which is prime.
		

Crossrefs

Programs

  • Maple
    with(numtheory): b := []: for n from 3 to 1000000 do t1 := divisors(n); t2 := convert(t1, list); t3 := add(t2[i], i=1..nops(t2)); if isprime(t3-3*n) then b := [op(b), n]; fi; od: b;
  • Mathematica
    f[n_]:=Plus@@Divisors[n]-3*n; lst={}; Do[a=f[n]; If[PrimeQ[a], AppendTo[lst, n]], {n, 9!}]; lst
    Select[Range[1000000], DivisorSigma[1,#] > 3*# && PrimeQ[DivisorSigma[1,#] - 3*#] &] (* Vaclav Kotesovec, Feb 23 2019 *)
  • PARI
    isok(n) = isprime(sigma(n) - 3*n); \\ Michel Marcus, Feb 19 2019

Extensions

More terms from Michel Marcus, Feb 19 2019

A358199 a(n) is the least integer whose sum of the i-th powers of the proper divisors is a prime for 1 <= i <= n, or -1 if no such number exists.

Original entry on oeis.org

4, 4, 981, 8829, 8829, 122029105, 2282761881
Offset: 1

Views

Author

Jean-Marc Rebert, Nov 02 2022

Keywords

Examples

			4 is a term since the strict divisors of 4 are {1, 2}, 1^1 + 2^1 = 3 and 1^2 + 2^2 = 5 are prime and no number < 4 has this property.
		

Crossrefs

Subsequence of A037020.

Programs

  • PARI
    card(n)=my(c=1,s=0);s=sigma(n)-n;while(isprime(s),c++;s=sigma(n,c)-n^c);c--
    a(n)=my(x=0);for(k=1,+oo,x=card(k);if(x>=n,return(k)))
    
  • Python
    from itertools import count
    from math import prod
    from sympy import isprime, factorint
    def A358199(n):
        for m in count(2):
            f = factorint(m).items()
            if all(map(isprime,(prod((p**((e+1)*i)-1)//(p**i-1) for p,e in f) - m**i for i in range(1,n+1)))):
                return m # Chai Wah Wu, Nov 15 2022

A365351 Exponents e such that the aliquot sequence starting with 2^e ends with a prime number at index 2.

Original entry on oeis.org

6, 11, 18, 27, 41, 74, 157, 197, 294, 549, 581
Offset: 1

Views

Author

Jean Luc Garambois, Sep 02 2023

Keywords

Comments

That is, exponents e such that s(s(2^e)) is prime, where s(n) = sigma(n)-n (A001065).
Note that exponents e such that aliquot sequences starting with 2^e end with a prime number at index 1 (exponents e such that s(2^e) is prime) are called "Mersenne exponents" (see A000043).
From Amiram Eldar, Sep 02 2023: (Start)
Numbers k such that 2^k - 1 is a term of A037020.
1206 < a(12) <= 2351 (2351 is a term). (End)

Crossrefs

Cf. A000043 (Mersenne exponents), A001065, A037020.

Programs

  • Mathematica
    Select[Range[100], PrimeQ[DivisorSigma[1, 2^# - 1] - 2^# + 1] &] (* Amiram Eldar, Sep 02 2023 *)
  • PARI
    f(n) = sigma(n) - n; \\ A001065
    isok(k) = ispseudoprime(f(f(2^k))); \\ Michel Marcus, Sep 02 2023
  • Sage
    def s(n):
        sn = sigma(n) - n
        return sn
    e = 1
    exponents_list = []
    while e<=200:
        m = 2^e
        index = 0
        if is_prime(s(s(m))):
            exponents_list.append(e)
        e+=1
    print (exponents_list)
    
Previous Showing 11-19 of 19 results.