cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 78 results. Next

A123754 Positive numbers of the form 4*n^2 - 1 which are not semiprimes.

Original entry on oeis.org

3, 63, 99, 195, 255, 399, 483, 575, 675, 783, 1023, 1155, 1295, 1443, 1599, 1935, 2115, 2303, 2499, 2703, 2915, 3135, 3363, 3843, 4095, 4355, 4623, 4899, 5475, 5775, 6083, 6399, 6723, 7055, 7395, 7743, 8099, 8463, 8835, 9215, 9603, 9999, 10815
Offset: 1

Views

Author

Roger L. Bagula, Nov 16 2006

Keywords

Comments

Positive numbers of the form 4*n^2 - 1 which are semiprimes can be found in A037074.
Or, all positive products of the form A014076(i)*[A014076(i)+-2], duplicates removed. - R. J. Mathar, Aug 08 2007

Crossrefs

Programs

  • Mathematica
    Select[4*(Range[54])^2-1, Not[PrimeQ[Sqrt[(#+ 1)]-1] && PrimeQ[Sqrt[(#+1)]+1]]&]
    Select[4*Range[100]^2-1,PrimeOmega[#]!=2&] (* Harvey P. Dale, Jul 24 2016 *)

Formula

Equals ( A000466 - {-1} ) - A001358. - R. J. Mathar, Aug 08 2007

Extensions

Edited by N. J. A. Sloane, Aug 03 2007

A126248 p*(p+1)*(p+2) where (p,p+2) are twin primes.

Original entry on oeis.org

60, 210, 1716, 5814, 26970, 74046, 215940, 373176, 1061106, 1259604, 2627934, 3374850, 5831820, 7077696, 7762194, 11852124, 13823760, 19682730, 22425486, 30371016, 42143844, 74087580, 80621136, 98610666, 142236126, 185192430
Offset: 1

Views

Author

Lekraj Beedassy, Dec 21 2006

Keywords

Crossrefs

Cf. A126249.

Formula

a(n) = A001359(n)*A014574(n)*A006512(n) = A037074(n)*A014574(n) = A007531(A006512(n)). a(n)=6*A126249(n).

A134020 Numbers that are one less than a square and have exactly 4 divisors.

Original entry on oeis.org

8, 15, 35, 143, 323, 899, 1763, 3599, 5183, 10403, 11663, 19043, 22499, 32399, 36863, 39203, 51983, 57599, 72899, 79523, 97343, 121103, 176399, 186623, 213443, 272483, 324899, 359999, 381923, 412163, 435599, 656099, 675683, 685583, 736163
Offset: 1

Views

Author

Giovanni Teofilatto, Jan 11 2008

Keywords

Comments

A037074 is a subsequence. - R. J. Mathar, Jun 08 2008

Programs

  • Maple
    with(numtheory): a:=proc(n) if type(sqrt(n+1),integer)=true and tau(n)=4 then n else end if end proc: seq(a(n),n=1..800000); # Emeric Deutsch, Jan 27 2008
  • Mathematica
    t={}; Do[If[DivisorSigma[0,n]==4&&IntegerQ[Sqrt[n+1]],AppendTo[t,n]],{n,10^6}]; t (* Jayanta Basu, Jun 03 2013 *)
    Select[Range[1000]^2-1,DivisorSigma[0,#]==4&] (* Harvey P. Dale, Jul 28 2023 *)

Extensions

Edited and extended by Emeric Deutsch, Jan 27 2008
Name reworded by Jon E. Schoenfield, Jan 15 2019

A164098 Numbers of the form m * (k_1^2 + k_2^2 + ... + k_m^2).

Original entry on oeis.org

1, 4, 9, 10, 16, 18, 20, 25, 26, 27, 28, 33, 34, 36, 40, 42, 48, 49, 50, 51, 52, 54, 55, 57, 58, 60, 63, 64, 65, 66, 68, 70, 72, 74, 76, 78, 80, 81, 82, 84, 85, 87, 88, 90, 91, 92, 95, 99, 100, 102, 104, 105, 106, 108, 110, 112, 114, 115, 116, 120, 121, 122, 123, 124, 125
Offset: 1

Views

Author

Jonas Wallgren, Aug 10 2009, Aug 17 2009

Keywords

Comments

From Franklin T. Adams-Watters, Aug 29 2009: (Start)
The k_i must all be positive integers.
Note that every integer > 33 is the sum of 5 positive squares, and for n > 5, every integer > n+13 is the sum of n positive squares. (End)
The complement of this sequence includes: A000040, A037074, A143206, 2 * A002145, and 3 * A094712. - Robert Israel, Jan 27 2025

Examples

			34 = 2*(4^2 + 1^2), 42 = 3*(3^2 + 2^2 + 1^2), thus 34 and 42 are in the sequence.
		

Crossrefs

Programs

  • Maple
    g:= proc(y,m)
      # can we write y as sum of m positive squares?
       option remember;
       local x;
       if y < m then return false fi;
       if m = 1 then return issqr(y) fi;
       if issqr(y-m+1) then return true fi;
       for x from 1 while x^2 + m-1 < y do
         if procname(y-x^2,m-1) then return true fi
       od;
       false
    end proc:
    filter:= proc(n)
      ormap(t -> g(n/t, t), numtheory:-divisors(n))
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Jan 26 2025
  • PARI
    issumsqs(n,k) = if(n<=0||k<=0,return(k==0&&n==0)); forstep(j=sqrtint(n),max(sqrtint(n\k),1),-1,if(issumsqs(n-j^2,k-1),return(1)));0
    isa(n)=local(ds);ds=divisors(n);for(k=1,(#ds+1)\2,if(issumsqs(n\ds[k],ds[k]),return(1)));0
    for(n=1,200,if(isa(n),print1(n","))) \\ Franklin T. Adams-Watters, Aug 29 2009

Extensions

More terms from Franklin T. Adams-Watters, Aug 29 2009

A165280 If p and q are twin primes then pq + 1 is always divisible by 3, except for (p,q)=(3,5). Sequence gives values of (pq + 1)/3.

Original entry on oeis.org

12, 48, 108, 300, 588, 1200, 1728, 3468, 3888, 6348, 7500, 10800, 12288, 13068, 17328, 19200, 24300, 26508, 32448, 40368, 58800, 62208, 71148, 90828, 108300, 120000, 127308, 137388, 145200, 218700, 225228, 228528, 245388, 259308, 346800
Offset: 1

Views

Author

Tanin (Mirza Sabbir Hossain Beg) (mirzasabbirhossainbeg(AT)yahoo.com), Sep 13 2009

Keywords

Crossrefs

Programs

  • Magma
    [(p+1)^2 div 3: p in PrimesInInterval(5,1100) |IsPrime(p+2)]; // Marius A. Burtea, Jan 02 2020
  • Mathematica
    p = Rest@ Select[ Prime@ Range@ 175, PrimeQ[ # + 2] & ]; (p (p + 2) + 1)/3 (* Robert G. Wilson v, Sep 13 2009 *)
    (Times@@#+1)/3&/@Select[Partition[Prime[Range[3,200]],2,1],#[[2]]-#[[1]] == 2&] (* Harvey P. Dale, Aug 28 2022 *)

Formula

a(n) = (A001359(n+1)*A006512(n+1)+1)/3 = (A037074(n+1)+1)/3 = A075369(n+1)/3. - Robert G. Wilson v, Sep 13 2009

Extensions

More terms from Robert G. Wilson v, Sep 13 2009
Edited by N. J. A. Sloane, Sep 15 2009

A229108 Increasing a(n)is the smallest number of the form p^a*q^b, where a,b are positive integers and p < q are odd primes such that max( p^a, q^b)/min( p^a, q^b) <= 1 + 2/prime(n).

Original entry on oeis.org

15, 35, 63, 143, 323, 575, 675, 783, 899, 1763, 2303, 3599, 5183, 6399, 6723, 10403, 11663, 15875, 19043, 22499, 27221, 28223, 32399, 36863, 39203, 50621, 51983, 53357, 57599, 58563, 72899, 77837, 79523, 95477, 97343, 119021, 121103, 123197, 129599
Offset: 2

Views

Author

Keywords

Examples

			15 is the least number of considered form, and 5/3 = 1 + 2/prime(2). So a(2)=15; in case of n=23, not only 28223 but also 29237 satisfies required inequality and we choose the smallest from them.
		

Crossrefs

Cf. A037074.

Programs

  • Mathematica
    tmp={1}; Do[test=1+2/Prime[n]; AppendTo[tmp, NestWhile[#+2&, Last[tmp]+2, !((Max[#]/Min[#]&[Map[#[[1]]^#[[2]]&, FactorInteger[#]]] <= test) && (Length[FactorInteger[#]]==2))&]], {n,2,30}]; Rest[tmp]
  • PARI
    factorPP(n)=my(f=factor(n)); vecsort(vector(#f~,i,f[i,1]^f[i,2]))
    list(n)=my(v=primes(n),t=1,f);for(i=1,n,while(1, f=factorPP(t += 2); if(#f==2 && f[2]/f[1] <= 1+2/v[i], v[i]=t; break))); v \\ Charles R Greathouse IV, Sep 13 2013

Formula

If [prime(n), prime(n+1)] is a twin pair, then a(n) <= prime(n)*prime(n+1).

A234542 Positive integer solutions to sigma(sigma(k) - k - 3)/phi(k - phi(k) + 3) = 3.

Original entry on oeis.org

15, 35, 68, 95, 119, 143, 155, 188, 203, 280, 289, 299, 323, 371, 395, 611, 695, 731, 779, 791, 803, 851, 899, 923, 959, 995, 1055, 1139, 1146, 1199, 1355, 1369, 1379, 1391, 1403, 1424, 1643, 1703, 1739, 1751, 1763, 1883, 1895, 1919, 2051, 2123, 2159, 2231, 2471, 2483, 2723, 2759, 2809
Offset: 1

Views

Author

Wesley Ivan Hurt, Dec 27 2013

Keywords

Comments

If n is the product of a pair of twin primes (A037074), then n is in the sequence (The first few terms of A037074 are: 15, 35, 143, 323, 899, 1763, 3599, ..). For these numbers, the numerator is equal to 3*sqrt(n + 1) and the denominator (A186749) is equal to sqrt(n + 1), giving 3 as a result.

Examples

			119 appears in the sequence since sigma(sigma(119) - 119 - 3)/phi(119 - phi(119) + 3) = sigma(22)/phi(26) = 36/12 = 3.
		

Crossrefs

Programs

  • Maple
    with(numtheory); A234542:=n->`if`(sigma(sigma(n)-n-3)/phi(n-phi(n)+3)=3,n,NULL); seq(A234542(n), n=1..5000);
  • Mathematica
    Select[Range[1000], DivisorSigma[1, DivisorSigma[1, #] - # - 3]/EulerPhi[# - EulerPhi[#] + 3] == 3 &] (* Alonso del Arte, Jan 01 2014 *)

Formula

Solutions to A000203(A001065(k) - 3)/A000010(A051953(k) + 3) = 3.

A263927 Least solution x to the equation x' = (x+1)/n, where x' is the arithmetic derivative of x; -1 if no solution exists.

Original entry on oeis.org

30, 15, 2, 3, 119, 5, 209, 7, 323, 559, 527, 11, 779, 13, 899, 1919, 1189, 17, 2507, 19, 1763, 42455401, 2759, 23, 5249, 2911, 3239, 23519, 3827, 29, 5207, 31
Offset: 1

Views

Author

Paolo P. Lava, Oct 30 2015

Keywords

Comments

For n <= 100 unknown terms are a(33), a(57), a(73), a(88) and a(92) (tested up to 10^8).
All solutions for n = 1 are Giuga numbers. - Paolo P. Lava, Jul 06 2018
a(33) and a(57) are greater than 10^12, if they exist. - Giovanni Resta, Jul 09 2018

Examples

			30' = 31 and 31 = (30 + 1) / 1;
15' = 8 and 8 =(15 + 1) / 2;
2' = 1 and 1 = (2 + 1) / 3.
		

Crossrefs

Cf. A003415, A007850 (Giuga numbers), A014574, A037074.

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,k,n,p;
    for k from 1 to q do for n from 1 to q do
    if n*add(op(2,p)/op(1,p),p=ifactors(n)[2])=(n+1)/k then
    print(n); break; fi; od; od; end: P(10^9);
  • Mathematica
    f[n_] := If[Abs@ n < 2, 0, n Total[#2/#1 & @@@ FactorInteger@ Abs@ n]]; Table[k = 0; While[f@ k != (k + 1)/n, k++]; k, {n, 21}] (* Michael De Vlieger, Nov 05 2015, after Michael Somos at A003415 *)
  • PARI
    d(x) = {local(fac); if(x<1, 0, fac=factor(x); sum(i=1, matsize(fac)[1], x*fac[i, 2]/fac[i, 1]))}
    a(n) = {x=2; while(k, if(d(x) == (x+1)/n, return(x)); x++)} \\ Altug Alkan, Nov 05 2015

Formula

a(n) = n-1 if n-1 is a prime.
a(A014574(n)/2) = A037074(n) if n-1 is not a prime. - Paolo P. Lava, Jul 06 2018

Extensions

Added a(52) and a(58) in a-file by Giovanni Resta, Jul 09 2018

A334141 Numbers that are the product of distinct twin primes.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 15, 17, 19, 21, 29, 31, 33, 35, 39, 41, 43, 51, 55, 57, 59, 61, 65, 71, 73, 77, 85, 87, 91, 93, 95, 101, 103, 105, 107, 109, 119, 123, 129, 133, 137, 139, 143, 145, 149, 151, 155, 165, 177, 179, 181, 183, 187, 191, 193, 195, 197, 199
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 15 2020

Keywords

Crossrefs

Subsequence of A005117.

Programs

  • Maple
    N:= 1000: # for terms <= N
    P:= select(isprime, {seq(i,i=3..N+2,2)}):
    TP:= P intersect map(`+`,P,2):
    TP:= map(t -> (t-2,t), TP):
    TP:= sort(convert(TP,list)):
    S:= {1}:
    for i from 1 to nops(TP) do
      S0:= S;
      S:= S union map(`*`, select(`<=`,S,N/TP[i]),TP[i]);
    od:
    sort(convert(S,list)); # Robert Israel, Oct 28 2020

A342552 The number of twin primes between prime(i)*prime(i+1) and prime(i+1)*prime(i+2) where prime(i) and prime(i+1) are twin primes.

Original entry on oeis.org

2, 3, 4, 3, 5, 6, 9, 11, 8, 12, 24, 19, 34, 14, 27, 14, 28, 17, 46, 26, 24, 55, 28, 14, 86, 50, 38, 66, 28, 67, 76, 41, 64, 40, 43, 93, 53, 87, 67, 48, 89, 66, 42, 72, 69, 76, 49, 76, 42, 49, 59, 73, 260, 109, 145, 169, 70, 137, 193, 292
Offset: 1

Views

Author

Zhandos Mambetaliyev, Mar 27 2021

Keywords

Crossrefs

Programs

  • PARI
    {for(n=1,200, if(prime(n+1)-prime(n)==2, my(a=prime(n)*prime(n+1), b=prime(n+1)*prime(n+2), c=0); for(m=a,b, if(isprime(m)==1&&isprime(m+2)==1, c=c+1)); print1(c, ", ")))}
Previous Showing 61-70 of 78 results. Next