cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 70 results. Next

A360617 Half the number of prime factors of n (counted with multiplicity, A001222), rounded up.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 1, 2, 1, 3, 2, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 08 2023

Keywords

Examples

			The prime indices of 378 are {1,2,2,2,4}, so a(378) = ceiling(5/2) = 3.
		

Crossrefs

Positions of 0's and 1's are 1 and A037143.
Positions of first appearances are A081294.
Rounding down instead of up gives A360616.
A112798 lists prime indices, length A001222, sum A056239, median* A360005.
A360673 counts multisets by right sum (exclusive), inclusive A360671.
First for prime indices, second for partitions, third for prime factors:
- A360676 gives left sum (exclusive), counted by A360672, product A361200.
- A360677 gives right sum (exclusive), counted by A360675, product A361201.
- A360678 gives left sum (inclusive), counted by A360675, product A347043.
- A360679 gives right sum (inclusive), counted by A360672, product A347044.

Programs

  • Mathematica
    Table[Ceiling[PrimeOmega[n]/2],{n,100}]

A060278 Sum of composite divisors of n less than n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 10, 0, 0, 0, 12, 0, 15, 0, 14, 0, 0, 0, 30, 0, 0, 9, 18, 0, 31, 0, 28, 0, 0, 0, 49, 0, 0, 0, 42, 0, 41, 0, 26, 24, 0, 0, 70, 0, 35, 0, 30, 0, 60, 0, 54, 0, 0, 0, 97, 0, 0, 30, 60, 0, 61, 0, 38, 0, 59, 0, 117, 0, 0, 40, 42, 0, 71, 0, 98, 36, 0, 0, 127, 0, 0, 0
Offset: 1

Views

Author

Jack Brennen, Mar 28 2001

Keywords

Crossrefs

Programs

  • Haskell
    a060278 1 = 0
    a060278 n = sum $ filter ((== 0) . a010051) $ tail $ a027751_row n
    -- Reinhard Zumkeller, Apr 05 2013
    
  • Maple
    for n from 1 to 300 do s := 0: for j from 2 to n-1 do if isprime(j) then else if n mod j = 0 then s := s+j fi; fi: od: printf(`%d,`,s) od:
  • Mathematica
    Join[{0},Table[Total[Select[Most[Rest[Divisors[n]]],!PrimeQ[#]&]],{n,2,90}]] (* Harvey P. Dale, Oct 25 2011 *)
    a[n_] := DivisorSigma[1, n] - Plus @@ FactorInteger[n][[;; , 1]] - If[PrimeQ[n], 0, n] - 1; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jun 20 2022 *)
  • PARI
    a(n) = sumdiv(n, d, if ((d1) && !isprime(d), d)); \\ Michel Marcus, Jan 13 2020

Formula

From Reinhard Zumkeller, Apr 05 2013: (Start)
a(n) = Sum_{k=2..A000005(n)-1} A010051(A027751(n,k));
a(A037143(n)) = 0;
a(A033942(n)) > 0. (End)

Extensions

More terms from James Sellers and Matthew Conroy, Mar 29 2001

A338902 Number of integer partitions of the n-th semiprime into semiprimes.

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 4, 7, 7, 10, 17, 25, 21, 34, 34, 73, 87, 103, 149, 176, 206, 281, 344, 479, 725, 881, 1311, 1597, 1742, 1841, 2445, 2808, 3052, 3222, 6784, 9298, 11989, 14533, 15384, 17414, 18581, 19680, 28284, 35862, 38125, 57095, 60582, 64010, 71730, 76016
Offset: 1

Views

Author

Gus Wiseman, Nov 24 2020

Keywords

Comments

A semiprime (A001358) is a product of any two prime numbers.

Examples

			The a(1) = 1 through a(33) = 17 partitions of 4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, where A-Z = 10-35:
  4  6  9  A   E    F   L     M      P      Q       X
           64  A4   96  F6    994    FA     M4      EA9
               644      966   A66    L4     AA6     F99
                        9444  E44    A96    E66     FE4
                              6664   F64    9944    L66
                              A444   9664   A664    P44
                              64444  94444  E444    9996
                                            66644   AA94
                                            A4444   E964
                                            644444  F666
                                                    FA44
                                                    L444
                                                    96666
                                                    A9644
                                                    F6444
                                                    966444
                                                    9444444
		

Crossrefs

A002100 counts partitions into squarefree semiprimes.
A056768 uses primes instead of semiprimes.
A101048 counts partitions into semiprimes.
A338903 is the squarefree version.
A339112 includes the Heinz numbers of these partitions.
A001358 lists semiprimes, with odd and even terms A046315 and A100484.
A037143 lists primes and semiprimes.
A084126 and A084127 give the prime factors of semiprimes.
A320655 counts factorizations into semiprimes.
A338898/A338912/A338913 give prime indices of semiprimes, with sum/difference/product A176504/A176506/A087794.
A338899/A270650/A270652 give prime indices of squarefree semiprimes.

Programs

  • Mathematica
    nn=100;Table[Length[IntegerPartitions[n,All,Select[Range[nn],PrimeOmega[#]==2&]]],{n,Select[Range[nn],PrimeOmega[#]==2&]}]

Formula

a(n) = A101048(A001358(n)).

A338909 Numbers of the form prime(x) * prime(y) where x and y have a common divisor > 1.

Original entry on oeis.org

9, 21, 25, 39, 49, 57, 65, 87, 91, 111, 115, 121, 129, 133, 159, 169, 183, 185, 203, 213, 235, 237, 247, 259, 267, 289, 299, 301, 303, 305, 319, 321, 339, 361, 365, 371, 377, 393, 417, 427, 445, 453, 481, 489, 497, 515, 517, 519, 529, 543, 551, 553, 559, 565
Offset: 1

Views

Author

Gus Wiseman, Nov 20 2020

Keywords

Examples

			The sequence of terms together with their prime indices begins:
      9: {2,2}     169: {6,6}     319: {5,10}
     21: {2,4}     183: {2,18}    321: {2,28}
     25: {3,3}     185: {3,12}    339: {2,30}
     39: {2,6}     203: {4,10}    361: {8,8}
     49: {4,4}     213: {2,20}    365: {3,21}
     57: {2,8}     235: {3,15}    371: {4,16}
     65: {3,6}     237: {2,22}    377: {6,10}
     87: {2,10}    247: {6,8}     393: {2,32}
     91: {4,6}     259: {4,12}    417: {2,34}
    111: {2,12}    267: {2,24}    427: {4,18}
    115: {3,9}     289: {7,7}     445: {3,24}
    121: {5,5}     299: {6,9}     453: {2,36}
    129: {2,14}    301: {4,14}    481: {6,12}
    133: {4,8}     303: {2,26}    489: {2,38}
    159: {2,16}    305: {3,18}    497: {4,20}
		

Crossrefs

A082023 counts partitions with these as Heinz numbers, complement A023022.
A300912 is the complement in A001358.
A339002 is the squarefree case.
A001221 counts distinct prime indices.
A001222 counts prime indices.
A001358 lists semiprimes, with odds A046315 and evens A100484.
A004526 counts 2-part partitions, with strict case A140106 (shifted left).
A006881 lists squarefree semiprimes, with odds A046388 and evens A100484.
A176504/A176506/A087794 give sum/difference/product of semiprime indices.
A318990 lists semiprimes with divisible indices.
A320655 counts factorizations into semiprimes.
A338898, A338912, and A338913 give semiprime indices.
A338899, A270650, and A270652 give squarefree semiprime indices.
A338910 lists semiprimes with odd indices.
A338911 lists semiprimes with even indices.

Programs

  • Mathematica
    Select[Range[100],PrimeOmega[#]==2&&GCD@@PrimePi/@First/@FactorInteger[#]>1&]

Formula

Equals A001358 \ A300912.
Equals A339002 \/ (A001248 \ {4}).

A342768 a(n) = A342767(n, n).

Original entry on oeis.org

1, 2, 3, 8, 5, 12, 7, 32, 27, 20, 11, 48, 13, 28, 45, 128, 17, 108, 19, 80, 63, 44, 23, 192, 125, 52, 243, 112, 29, 180, 31, 512, 99, 68, 175, 432, 37, 76, 117, 320, 41, 252, 43, 176, 405, 92, 47, 768, 343, 500, 153, 208, 53, 972, 275, 448, 171, 116, 59, 720
Offset: 1

Views

Author

Rémy Sigrist, Apr 02 2021

Keywords

Comments

This sequence has similarities with A087019.
These are the positions of first appearances of each positive integer in A346701, and also in A346703. - Gus Wiseman, Aug 09 2021

Examples

			For n = 42:
- 42 = 2 * 3 * 7, so:
          2 3 7
        x 2 3 7
        -------
          2 3 7
        2 3 3
    + 2 2 2
    -----------
      2 2 3 3 7
- hence a(42) = 2 * 2 * 3 * 3 * 7 = 252.
		

Crossrefs

The sum of prime indices of a(n) is 2*A056239(n) - A061395(n).
The version for even indices is A129597(n) = 2*a(n) for n > 1.
The sorted version is A346635.
These are the positions of first appearances in A346701 and in A346703.
A001221 counts distinct prime factors.
A001222 counts prime factors with multiplicity.
A027193 counts partitions of odd length, ranked by A026424.
A209281 adds up the odd bisection of standard compositions (even: A346633).
A346697 adds up the odd bisection of prime indices (reverse: A346699).

Programs

  • Mathematica
    Table[n^2/FactorInteger[n][[-1,1]],{n,100}] (* Gus Wiseman, Aug 09 2021 *)
  • PARI
    See Links section.

Formula

a(n) = n iff n = 1 or n is a prime number.
a(p^k) = p^(2*k-1) for any k > 0 and any prime number p.
A007947(a(n)) = A007947(n).
A001222(a(n)) = 2*A001222(n) - 1 for any n > 1.
From Gus Wiseman, Aug 09 2021: (Start)
A001221(a(n)) = A001221(n).
If g = A006530(n) is the greatest prime factor of n, then a(n) = n^2/g.
a(n) = A129597(n)/2.
(End)

A346635 Numbers whose division (or multiplication) by their greatest prime factor yields a perfect square. Numbers k such that k*A006530(k) is a perfect square.

Original entry on oeis.org

1, 2, 3, 5, 7, 8, 11, 12, 13, 17, 19, 20, 23, 27, 28, 29, 31, 32, 37, 41, 43, 44, 45, 47, 48, 52, 53, 59, 61, 63, 67, 68, 71, 73, 76, 79, 80, 83, 89, 92, 97, 99, 101, 103, 107, 108, 109, 112, 113, 116, 117, 124, 125, 127, 128, 131, 137, 139, 148, 149, 151, 153
Offset: 1

Views

Author

Gus Wiseman, Aug 10 2021

Keywords

Comments

This is the sorted version of A342768(n) = position of first appearance of n in A346701 (but A346703 works also).

Examples

			The terms together with their prime indices begin:
     1: {}          31: {11}            71: {20}
     2: {1}         32: {1,1,1,1,1}     73: {21}
     3: {2}         37: {12}            76: {1,1,8}
     5: {3}         41: {13}            79: {22}
     7: {4}         43: {14}            80: {1,1,1,1,3}
     8: {1,1,1}     44: {1,1,5}         83: {23}
    11: {5}         45: {2,2,3}         89: {24}
    12: {1,1,2}     47: {15}            92: {1,1,9}
    13: {6}         48: {1,1,1,1,2}     97: {25}
    17: {7}         52: {1,1,6}         99: {2,2,5}
    19: {8}         53: {16}           101: {26}
    20: {1,1,3}     59: {17}           103: {27}
    23: {9}         61: {18}           107: {28}
    27: {2,2,2}     63: {2,2,4}        108: {1,1,2,2,2}
    28: {1,1,4}     67: {19}           109: {29}
    29: {10}        68: {1,1,7}        112: {1,1,1,1,4}
		

Crossrefs

Removing 1 gives a subset of A026424.
The unsorted even version is A129597.
The unsorted version is A342768(n) = A342767(n,n).
Except the first term, the even version is 2*a(n).
A000290 lists squares.
A001221 counts distinct prime factors.
A001222 counts all prime factors.
A006530 gives the greatest prime factor.
A061395 gives the greatest prime index.
A027193 counts partitions of odd length.
A056239 adds up prime indices, row sums of A112798.
A209281 = odd bisection sum of standard compositions (even: A346633).
A316524 = alternating sum of prime indices (sign: A344617, rev.: A344616).
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344606 counts alternating permutations of prime indices.
A346697 = odd bisection sum of prime indices (weights of A346703).
A346699 = odd bisection sum of reversed prime indices (weights of A346701).

Programs

  • Maple
    filter:= proc(n) issqr(n/max(numtheory:-factorset(n))) end proc:
    filter(1):= true:
    select(filter, [$1..200]); # Robert Israel, Nov 26 2022
  • Mathematica
    sqrQ[n_]:=IntegerQ[Sqrt[n]];
    Select[Range[100],sqrQ[#*FactorInteger[#][[-1,1]]]&]
  • PARI
    isok(m) = (m==1) || issquare(m/vecmax(factor(m)[,1])); \\ Michel Marcus, Aug 12 2021

Formula

a(n) = A129597(n)/2 for n > 1.

A347708 Number of distinct possible alternating products of odd-length factorizations of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 2, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 2, 1, 2, 2, 1, 1, 4, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 1, 5, 1, 1, 2, 3, 1, 2, 1, 2, 1, 2, 1, 5, 1, 1, 2, 2, 1, 2, 1, 4, 2, 1, 1, 5, 1, 1, 1, 3, 1, 3, 1, 2, 1, 1, 1, 5, 1, 2, 2, 3, 1, 2, 1, 3, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 11 2021

Keywords

Comments

We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
Note that it is sufficient to look at only length-1 and length-3 factorizations; cf. A347709.

Examples

			Representative factorizations for each of the a(180) = 7 alternating products:
  (2*2*3*3*5) -> 5
     (2*2*45) -> 45
     (2*3*30) -> 20
     (2*5*18) -> 36/5
     (2*9*10) -> 20/9
     (3*4*15) -> 45/4
        (180) -> 180
		

Crossrefs

The version for partitions is A028310, reverse A347707.
Positions of 1's appear to be A037143 \ {1}.
The even-length version for n > 1 is A072670, strict A211159.
Counting only integers appears to give A293234, with evens A046951.
This is the odd-length case of A347460, reverse A038548.
The any-length version for partitions is A347461, reverse A347462.
The length-3 case is A347709.
A001055 counts factorizations (strict A045778, ordered A074206).
A056239 adds up prime indices, row sums of A112798.
A276024 counts distinct positive subset-sums of partitions.
A292886 counts knapsack factorizations, by sum A293627.
A301957 counts distinct subset-products of prime indices.
A304792 counts distinct subset-sums of partitions.
A347050 = factorizations w/ an alternating permutation, complement A347706.
A347441 counts odd-length factorizations with integer alternating product.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Union[altprod/@Select[facs[n],OddQ[Length[#]]&]]],{n,100}]
  • PARI
    altprod(facs) = prod(i=1,#facs,facs[i]^((-1)^(i-1)));
    A347708aux(n, m=n, facs=List([])) = if(1==n, if((#facs)%2, altprod(facs), 0), my(newfacs, r, rats=List([])); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); r = A347708aux(n/d, d, newfacs); if(r, rats = concat(rats,r)))); (rats));
    A347708(n) = if(1==n,0,#Set(A347708aux(n))); \\ Antti Karttunen, Jan 29 2025

Formula

Conjecture: For n > 1, a(n) = 1 + A347460(n) - A038548(n) + A072670(n).

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 29 2025

A109810 Number of permutations of the positive divisors of n, where every element is coprime to its adjacent elements.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 0, 2, 4, 2, 0, 2, 4, 4, 0, 2, 0, 2, 0, 4, 4, 2, 0, 2, 4, 0, 0, 2, 0, 2, 0, 4, 4, 4, 0, 2, 4, 4, 0, 2, 0, 2, 0, 0, 4, 2, 0, 2, 0, 4, 0, 2, 0, 4, 0, 4, 4, 2, 0, 2, 4, 0, 0, 4, 0, 2, 0, 4, 0, 2, 0, 2, 4, 0, 0, 4, 0, 2, 0, 0, 4, 2, 0, 4, 4, 4, 0, 2, 0, 4, 0, 4, 4, 4, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0
Offset: 1

Views

Author

Leroy Quet, Aug 16 2005

Keywords

Comments

Depends only on prime signature. - Reinhard Zumkeller, May 24 2010

Examples

			The divisors of 6 are 1, 2, 3 and 6. Of the permutations of these integers, only (6,1,2,3), (6,1,3,2), (2,3,1,6) and (3,2,1,6) are such that every pair of adjacent elements is coprime.
		

Crossrefs

Cf. A178254. - Reinhard Zumkeller, May 24 2010

Formula

a(1)=1, a(p) = 2, a(p^2) = 2, a(p*q) = 4 (where p and q are distinct primes), all other terms are 0.
a(A033942(n))=0; a(A037143(n))>0; a(A000430(n))=2; a(A006881(n))=4. - Reinhard Zumkeller, May 24 2010

Extensions

Terms 17 to 59 from Diana L. Mecum, Jul 18 2008
More terms from David Wasserman, Oct 01 2008

A139690 a(n) = A109611(n) + 2.

Original entry on oeis.org

4, 5, 7, 9, 13, 15, 19, 21, 25, 31, 33, 39, 43, 49, 55, 61, 69, 73, 85, 91, 103, 109, 111, 115, 129, 133, 139, 141, 151, 159, 169, 181, 183, 193, 199, 201, 213, 229, 235, 241, 253, 259, 265, 271, 283, 295, 309, 313, 319, 339, 349, 355, 361, 381, 391, 403, 411
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 29 2008

Keywords

Crossrefs

Intersection of A052147 and A037143; A006512 is a subsequence.
Cf. A109611.

Programs

  • Mathematica
    Cases[Import["https://oeis.org/A109611/b109611.txt", "Table"], {, }][[All, 2]] + 2 (* Robert Price, Apr 19 2025 *)
  • PARI
    list(lim)=my(v=List(),t); forprime(p=2,lim\2, forprime(q=2,min(p,lim\p), if(isprime(t=p*q-2), listput(v,t+2)))); t=2; forprime(p=3,lim, if(p-t==2, listput(v,p)); t=p); Set(v) \\ Charles R Greathouse IV, Jan 19 2017

Formula

A010051(a(n)) = A139689(n); A064911(a(n)) = 1 - A139689(n);
A001222(a(n)) = 2 - A139689(n).

A063928 Largest nonprime proper divisor of n (with a(1)=1).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 6, 1, 1, 1, 8, 1, 9, 1, 10, 1, 1, 1, 12, 1, 1, 9, 14, 1, 15, 1, 16, 1, 1, 1, 18, 1, 1, 1, 20, 1, 21, 1, 22, 15, 1, 1, 24, 1, 25, 1, 26, 1, 27, 1, 28, 1, 1, 1, 30, 1, 1, 21, 32, 1, 33, 1, 34, 1, 35, 1, 36, 1, 1, 25, 38, 1, 39, 1, 40, 27, 1, 1, 42, 1, 1, 1, 44, 1
Offset: 1

Views

Author

Henry Bottomley, Aug 15 2001

Keywords

Comments

a(m)*a(n) <= a(m*n); a(m)*a(n) = a(m*n) iff m and n are prime or = 1. - Reinhard Zumkeller, Apr 11 2008

Crossrefs

a(n)=1 if n is 1, prime (A000040), or the product of two primes (A001358), i.e., if n is in A037143, otherwise, with n in A033942, a(n)=A032742(n). Cf. A006530.

Programs

  • PARI
    { for (n=1, 1000, if (n==1, a=1, d=divisors(n); m=length(d); until (!isprime(a), m--; a=d[m])); write("b063928.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 02 2009
Previous Showing 31-40 of 70 results. Next