cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 57 results. Next

A037279 If n is composite, replace n with the concatenation of its nontrivial divisors, otherwise a(n) = n.

Original entry on oeis.org

1, 2, 3, 2, 5, 23, 7, 24, 3, 25, 11, 2346, 13, 27, 35, 248, 17, 2369, 19, 24510, 37, 211, 23, 2346812, 5, 213, 39, 24714, 29, 23561015, 31, 24816, 311, 217, 57, 234691218, 37, 219, 313, 24581020, 41, 23671421, 43, 241122, 35915, 223, 47, 23468121624, 7
Offset: 1

Views

Author

Keywords

Examples

			Divisors of 12 are 1,2,3,4,6,12, so a(12)=2346.
		

Crossrefs

Programs

  • Maple
    A037279 := proc(n) local dvs ; if isprime(n) or n = 1 then n; else dvs := [op(numtheory[divisors](n) minus {1,n} )] ; dvs := sort(dvs) ; cat(op(dvs)) ; fi ; end: seq(A037279(n),n=1..80) ; # R. J. Mathar, Jul 23 2007
  • Mathematica
    f[n_]:=If[PrimeQ[n],n,FromDigits[Flatten[IntegerDigits/@Rest[ Most[ Divisors[n]]]]]]; Join[{1},Array[f,50,2]] (* Harvey P. Dale, Sep 24 2012 *)

Extensions

More terms from Erich Friedman
Edited by N. J. A. Sloane, Aug 29 2008 at the suggestion of R. J. Mathar

A243535 Numbers whose list of divisors contains 2 distinct digits (in base 10).

Original entry on oeis.org

2, 3, 5, 7, 13, 17, 19, 22, 31, 33, 41, 55, 61, 71, 77, 101, 113, 121, 131, 151, 181, 191, 199, 211, 311, 313, 331, 661, 811, 881, 911, 919, 991, 1111, 1117, 1151, 1171, 1181, 1511, 1777, 1811, 1999, 2111, 2221, 3313, 3331, 4111, 4441, 6661, 7177, 7717, 8111
Offset: 1

Views

Author

Jaroslav Krizek, Jun 13 2014

Keywords

Comments

Numbers k such that A037278(k), A176558(k) and A243360(k) contain 2 distinct digits.
Many of the composite terms are in A203897. - Charles R Greathouse IV, Sep 06 2016
Terms are either repdigit numbers (A010785) or contain only 1 and a single other digit. - Michael S. Branicky, Nov 16 2022

Examples

			121 is in the sequence because the list of divisors of 121, i.e., (1, 11, 121), contains 2 distinct digits (1, 2).
		

Crossrefs

Sequences of numbers n such that the list of divisors of n contains k distinct digits for 1 <= k <= 10: k = 1: A243534; k = 2: A243535; k = 3: A243536; k = 4: A243537; k = 5: A243538; k = 6: A243539; k = 7: A243540; k = 8: A243541; k = 9: A243542; k = 10: A095050.
Cf. A243543 (the smallest number m whose list of divisors contains n distinct digits).

Programs

  • Excel
    [Row n = 1..10000; Column A: A(n) = A095048(n); Column B: B(n) = IF(A(n)=2;A(n)); Arrangement of column B]
    
  • Maple
    dmax:= 6: # get all terms of <= dmax digits
    Res:= {}:
    for a in [0,$2..9] do
        S:= {0}:
        for d from 1 to dmax do
            S:= map(t -> (10*t+1,10*t+a), S);
            Res:= Res union select(filter, S)
        od
    od:
    sort(convert(Res,list)): # Robert Israel, Sep 05 2016
  • Mathematica
    Select[Range[9000],Length[Union[Flatten[IntegerDigits/@Divisors[ #]]]] == 2&] (* Harvey P. Dale, Dec 14 2017 *)
  • PARI
    isok(n) = vd = []; fordiv(n, d, vd = concat(vd, digits(d))); #Set(vd) == 2; \\ Michel Marcus, Jun 13 2014
    
  • Python
    from sympy import divisors
    from itertools import count, islice, product
    def ok(n):
        s = set("1"+str(n))
        if len(s) > 2: return False
        for d in divisors(n, generator=True):
            s |= set(str(d))
            if len(s) > 2: return False
        return len(s) == 2
    def agen():
        yield from [2, 3, 5, 7]
        for d in count(2):
            s = set()
            for first, other in product("123456789", "0123456789"):
                for p in product(sorted(set(first+other)), repeat=d-1):
                    if other not in p: continue
                    t = int(first+"".join(p))
                    if ok(t): s.add(t)
            yield from sorted(s)
    print(list(islice(agen(), 52))) # Michael S. Branicky, Nov 16 2022

A243536 Numbers n such that list of divisors of n contains 3 distinct digits (in base 10).

Original entry on oeis.org

4, 9, 15, 23, 25, 29, 37, 39, 43, 44, 47, 53, 59, 67, 73, 79, 83, 89, 93, 95, 97, 99, 103, 107, 109, 111, 119, 122, 125, 127, 137, 139, 143, 149, 155, 157, 163, 167, 173, 179, 187, 193, 197, 202, 223, 227, 229, 233, 241, 242, 251, 271, 277, 281, 303, 317, 337
Offset: 1

Views

Author

Jaroslav Krizek, Jun 13 2014

Keywords

Comments

Numbers n such that A037278(n), A176558(n) and A243360(n) contain 3 distinct digits.

Examples

			44 is in sequence because list of divisors of 44: (1, 2, 4, 11, 22, 44) contains 3 distinct digits (1, 2, 4).
		

Crossrefs

Sequences of numbers n such that list of divisors of n contains k distinct digits for 1 <= k <= 10: k = 1: A243534; k = 2: A243535; k = 3: A243536; k = 4: A243537; k = 5: A243538; k = 6: A243539; k = 7: A243540; k = 8: A243541; k = 9: A243542; k = 10: A095050.
Cf. A243543 (the smallest number m whose list of divisors contains n distinct digits).

Programs

  • Excel
    [Row n = 1 …10000; Column A: A(n) = A095048(n); Column B: B(n) = IF(A(n)=3;A(n)); Arrangement of column B]

A243537 Numbers n such that list of divisors of n contains 4 distinct digits (in base 10).

Original entry on oeis.org

6, 8, 10, 14, 21, 26, 35, 49, 50, 51, 62, 65, 66, 82, 85, 88, 91, 110, 115, 117, 123, 133, 141, 142, 159, 165, 169, 183, 209, 213, 217, 221, 226, 231, 239, 244, 250, 253, 257, 262, 263, 269, 275, 283, 293, 295, 299, 307, 309, 319, 326, 333, 347, 349, 355, 359
Offset: 1

Views

Author

Jaroslav Krizek, Jun 13 2014

Keywords

Comments

Numbers n such that A037278(n), A176558(n) and A243360(n) contain 4 distinct digits.

Examples

			49 is in sequence because divisors of 49: (1, 7, 49) contain 4 distinct digits (1, 4, 7, 9).
		

Crossrefs

Sequences of numbers n such that list of divisors of n contains k distinct digits for 1 <= k <= 10: k = 1: A243534; k = 2: A243535; k = 3: A243536; k = 4: A243537; k = 5: A243538; k = 6: A243539; k = 7: A243540; k = 8: A243541; k = 9: A243542; k = 10: A095050.
Cf. A243543.

Programs

  • Excel
    [Row n = 1 …10000; Column A: A(n) = A095048(n); Column B: B(n) = IF(A(n)=4;A(n)); Arrangement of column B]
  • Mathematica
    Select[Range[400],Length[Union[Flatten[IntegerDigits/@Divisors[#]]]] == 4&] (* Harvey P. Dale, Aug 22 2021 *)

A243538 Numbers n such that the list of divisors of n contains 5 distinct digits (in base 10).

Original entry on oeis.org

12, 16, 20, 27, 28, 34, 38, 45, 46, 57, 58, 69, 74, 75, 94, 100, 118, 124, 129, 132, 145, 153, 154, 161, 164, 166, 171, 175, 177, 178, 185, 194, 195, 205, 206, 214, 215, 218, 219, 220, 237, 254, 265, 273, 274, 279, 284, 287, 289, 291, 297, 298, 301, 302, 305
Offset: 1

Views

Author

Jaroslav Krizek, Jun 19 2014

Keywords

Comments

Numbers n such that A037278(n), A176558(n) and A243360(n) contain 5 distinct digits.

Examples

			45 is in sequence because the list of divisors of 45: (1, 3, 5, 9, 15, 45) contains 5 distinct digits (1, 3, 4, 5, 9).
		

Crossrefs

Sequences of numbers n such that the list of divisors of n contains k distinct digits for 1 <= k <= 10: k = 1: A243534; k = 2: A243535; k = 3: A243536; k = 4: A243537; k = 5: A243538; k = 6: A243539; k = 7: A243540; k = 8: A243541; k = 9: A243542; k = 10: A095050.
Cf. A243543 (the smallest number m whose list of divisors contains n distinct digits).

Programs

  • Excel
    [Row n = 1...10000; Column A: A(n) = A095048(n); Column B: B(n) = IF(A(n)=5;A(n)); Arrangement of column B]

A243539 Numbers n such that the list of divisors of n contains 6 distinct digits (in base 10).

Original entry on oeis.org

18, 24, 30, 32, 40, 42, 48, 52, 63, 64, 81, 86, 87, 92, 98, 105, 106, 128, 130, 134, 146, 147, 148, 158, 176, 186, 188, 198, 200, 201, 203, 222, 235, 246, 247, 248, 249, 255, 259, 264, 278, 286, 310, 314, 322, 327, 328, 329, 330, 332, 334, 338, 346, 351, 357
Offset: 1

Views

Author

Jaroslav Krizek, Jun 19 2014

Keywords

Comments

Numbers n such that A037278(n), A176558(n) and A243360(n) contain 6 distinct digits.

Examples

			48 is in sequence because the list of divisors of 48: (1, 2, 3, 4, 6, 8, 12, 16, 24, 48) contains 6 distinct digits (1, 2, 3, 4, 6, 8).
		

Crossrefs

Sequences of numbers n such that the list of divisors of n contains k distinct digits for 1 <= k <= 10: k = 1: A243534; k = 2: A243535; k = 3: A243536; k = 4: A243537; k = 5: A243538; k = 6: A243539; k = 7: A243540; k = 8: A243541; k = 9: A243542; k = 10: A095050.
Cf. A243543 (the smallest number m whose list of divisors contains n distinct digits).

Programs

  • Excel
    [Row n = 1...10000; Column A: A(n) = A095048(n); Column B: B(n) = IF(A(n)=6;A(n)); Arrangement of column B]
  • Mathematica
    Select[Range[400],Length[Union[Flatten[IntegerDigits/@Divisors[#]]]]==6&] (* Harvey P. Dale, Apr 13 2025 *)

A243540 Numbers n such that the list of divisors of n contains 7 distinct digits (in base 10).

Original entry on oeis.org

36, 56, 60, 68, 70, 78, 80, 84, 96, 112, 116, 135, 136, 138, 150, 172, 184, 189, 190, 192, 196, 207, 212, 225, 230, 238, 243, 245, 256, 260, 261, 267, 268, 272, 285, 290, 292, 344, 345, 350, 358, 368, 384, 387, 388, 396, 400, 402, 418, 441, 444, 455, 459, 462
Offset: 1

Views

Author

Jaroslav Krizek, Jun 19 2014

Keywords

Comments

Numbers n such that A037278(n), A176558(n) and A243360(n) contain 7 distinct digits.

Examples

			36 is in sequence because the list of divisors of 36: (1, 2, 3, 4, 6, 9, 12, 18, 36) contains 7 distinct digits (1, 2, 3, 4, 6, 8, 9).
		

Crossrefs

Sequences of numbers n such that the list of divisors of n contains k distinct digits for 1 <= k <= 10: k = 1: A243534; k = 2: A243535; k = 3: A243536; k = 4: A243537; k = 5: A243538; k = 6: A243539; k = 7: A243540; k = 8: A243541; k = 9: A243542; k = 10: A095050.
Cf. A243543 (the smallest number m whose list of divisors contains n distinct digits).

Programs

  • Excel
    [Row n = 1...10000; Column A: A(n) = A095048(n); Column B: B(n) = IF(A(n)=7;A(n)); Arrangement of column B]

A243541 Numbers n such that the list of divisors of n contains 8 distinct digits (in base 10).

Original entry on oeis.org

72, 76, 102, 104, 120, 126, 140, 144, 160, 168, 170, 182, 208, 210, 224, 232, 234, 236, 240, 258, 266, 276, 282, 288, 294, 296, 300, 308, 318, 320, 336, 352, 370, 372, 376, 416, 424, 430, 435, 436, 438, 448, 460, 464, 470, 476, 483, 494, 518, 520, 528, 536
Offset: 1

Views

Author

Jaroslav Krizek, Jun 19 2014

Keywords

Comments

Numbers n such that A037278(n), A176558(n) and A243360(n) contain 8 distinct digits.

Examples

			72 is in sequence because the list of divisors of 72: (1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72) contains 8 distinct digits (1, 2, 3, 4, 6, 7, 8, 9).
		

Crossrefs

Sequences of numbers n such that the list of divisors of n contains k distinct digits for 1 <= k <= 10: k = 1: A243534; k = 2: A243535; k = 3: A243536; k = 4: A243537; k = 5: A243538; k = 6: A243539; k = 7: A243540; k = 8: A243541; k = 9: A243542; k = 10: A095050.
Cf. A243543 (the smallest number m whose list of divisors contains n distinct digits).

Programs

  • Excel
    [Row n = 1 …10000; Column A: A(n) = A095048(n); Column B: B(n) = IF(A(n)=8;A(n)); Arrangement of column B]
  • Mathematica
    Select[Range[600],Length[Union[Flatten[IntegerDigits/@Divisors[#]]]]==8&] (* Harvey P. Dale, Jul 14 2016 *)

A243542 Numbers n such that the list of divisors of n contains 9 distinct digits (in base 10).

Original entry on oeis.org

54, 90, 114, 152, 156, 162, 174, 180, 204, 228, 252, 280, 315, 316, 340, 342, 348, 354, 356, 364, 378, 390, 392, 405, 408, 414, 420, 456, 468, 472, 474, 480, 486, 490, 510, 516, 522, 532, 534, 546, 552, 556, 560, 564, 576, 582, 584, 588, 592, 594, 600, 616
Offset: 1

Views

Author

Jaroslav Krizek, Jun 19 2014

Keywords

Comments

Numbers n such that A037278(n), A176558(n) and A243360(n) contain 9 distinct digits.

Examples

			54 is in sequence because the list of divisors of 54: (1, 2, 3, 6, 9, 18, 27, 54) contains 9 distinct digits (1, 2, 3, 4, 5, 6, 7, 8, 9).
		

Crossrefs

Sequences of numbers n such that the list of divisors of n contains k distinct digits for 1 <= k <= 10: k = 1: A243534; k = 2: A243535; k = 3: A243536; k = 4: A243537; k = 5: A243538; k = 6: A243539; k = 7: A243540; k = 8: A243541; k = 9: A243542; k = 10: A095050.
Cf. A243543 (the smallest number m whose list of divisors contains n distinct digits).

Programs

  • Excel
    [Row n = 1 …10000; Column A: A(n) = A095048(n); Column B: B(n) = IF(A(n)=9;A(n)); Arrangement of column B]

A106708 a(n) is the concatenation of its nontrivial divisors.

Original entry on oeis.org

0, 0, 0, 2, 0, 23, 0, 24, 3, 25, 0, 2346, 0, 27, 35, 248, 0, 2369, 0, 24510, 37, 211, 0, 2346812, 5, 213, 39, 24714, 0, 23561015, 0, 24816, 311, 217, 57, 234691218, 0, 219, 313, 24581020, 0, 23671421, 0, 241122, 35915, 223, 0, 23468121624, 7, 251025, 317
Offset: 1

Views

Author

N. J. A. Sloane, Jul 20 2007

Keywords

Crossrefs

Cf. A037278, A120712, A037279, A131983 (records), A131984 (where records occur).

Programs

  • Haskell
    a106708 1           = 0
    a106708 n
       | a010051 n == 1 = 0
       | otherwise = read $ concat $ (map show) $ init $ tail $ a027750_row n
    -- Reinhard Zumkeller, May 01 2012
    
  • Maple
    A106708 := proc(n) local dvs ; if isprime(n) or n = 1 then 0; else dvs := [op(numtheory[divisors](n) minus {1,n} )] ; dvs := sort(dvs) ; cat(op(dvs)) ; fi ; end: seq(A106708(n),n=1..80) ; # R. J. Mathar, Aug 01 2007
  • Mathematica
    Table[If[CompositeQ[n],FromDigits[Flatten[IntegerDigits/@Rest[ Most[ Divisors[ n]]]]],0],{n,60}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 22 2020 *)
  • PARI
    {map(n) = local(d); d=divisors(n); if(#d<3, 0, d[1]=""; eval(concat(vecextract(d, concat("..", #d-1)))))}
    for(n=1,51,print1(map(n),",")) /* Klaus Brockhaus, Aug 05 2007 */
    
  • Python
    from sympy import divisors
    def a(n):
      nontrivial_divisors = [d for d in divisors(n)[1:-1]]
      if len(nontrivial_divisors) == 0: return 0
      else: return int("".join(str(d) for d in nontrivial_divisors))
    print([a(n) for n in range(1, 52)]) # Michael S. Branicky, Dec 31 2020

Formula

a(n) = A037279(n) * A010051(n). - R. J. Mathar, Aug 01 2007

Extensions

More terms from R. J. Mathar and Klaus Brockhaus, Aug 01 2007
Name edited by Michael S. Branicky, Dec 31 2020
Previous Showing 11-20 of 57 results. Next