cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 57 results. Next

A257223 Numbers that have at least one divisor containing the digit 6 in base 10.

Original entry on oeis.org

6, 12, 16, 18, 24, 26, 30, 32, 36, 42, 46, 48, 52, 54, 56, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 72, 76, 78, 80, 84, 86, 90, 92, 96, 102, 104, 106, 108, 112, 114, 116, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 144, 146, 150, 152, 156, 160, 161, 162
Offset: 1

Views

Author

Jaroslav Krizek, May 05 2015

Keywords

Comments

Numbers k whose concatenation of divisors A037278(k), A176558(k), A243360(k) or A256824(k) contains a digit 6.
A011536 (numbers that contain a 6) is a subsequence. - Michel Marcus, May 25 2015

Examples

			18 is in sequence because the list of divisors of 18: (1, 2, 3, 6, 9, 18) contains digit 6.
		

Crossrefs

Cf. similar sequences with another digit: A209932 (0), A000027 (1), A257219 (2), A257220 (3), A257221 (4), A257222 (5), A257224 (7), A257225 (8), A257226 (9).

Programs

  • Magma
    [n: n in [1..1000] | [6] subset Setseq(Set(Sort(&cat[Intseq(d): d in Divisors(n)])))];
    
  • Mathematica
    Select[Range@108, Part[Plus @@ DigitCount@ Divisors@ #, 6] > 0 &]
    Select[Range[200],Count[Flatten[IntegerDigits/@Divisors[#]],6]>0&] (* Harvey P. Dale, Nov 05 2021 *)
  • PARI
    is(n)=fordiv(n, d, if(setsearch(Set(digits(d)), 6), return(1))); 0

Formula

a(n) ~ n.

Extensions

Mathematica and PARI programs with assistance from Michael De Vlieger and Charles R Greathouse IV, respectively.

A257224 Numbers that have at least one divisor containing the digit 7 in base 10.

Original entry on oeis.org

7, 14, 17, 21, 27, 28, 34, 35, 37, 42, 47, 49, 51, 54, 56, 57, 63, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 84, 85, 87, 91, 94, 97, 98, 102, 105, 107, 108, 111, 112, 114, 117, 119, 126, 127, 133, 134, 135, 136, 137, 140, 141, 142, 144, 146, 147, 148
Offset: 1

Views

Author

Jaroslav Krizek, May 05 2015

Keywords

Comments

Numbers k whose concatenation of divisors A037278(k), A176558(k), A243360(k) or A256824(k) contains a digit 7.
A011537 (numbers that contain a 7) is a subsequence. - Michel Marcus, May 25 2015

Examples

			14 is in sequence because the list of divisors of 14: (1, 2, 7, 14) contains digit 7.
		

Crossrefs

Cf. similar sequences with another digit: A209932 (0), A000027 (1), A257219 (2), A257220 (3), A257221 (4), A257222 (5), A257223 (6), A257225 (8), A257226 (9).

Programs

  • Magma
    [n: n in [1..1000] | [7] subset Setseq(Set(Sort(&cat[Intseq(d): d in Divisors(n)])))];
    
  • Mathematica
    Select[Range@108, Part[Plus @@ DigitCount@ Divisors@ #, 7] > 0 &]
  • PARI
    is(n)=fordiv(n, d, if(setsearch(Set(digits(d)), 7), return(1))); 0
    
  • Python
    from itertools import count, islice
    from sympy import divisors
    def A257224_gen(): return filter(lambda n:any('7' in str(d) for d in divisors(n, generator=True)), count(1))
    A257224_list = list(islice(A257224_gen(), 60)) # Chai Wah Wu, Dec 27 2021

Formula

a(n) ~ n.

Extensions

Mathematica and PARI programs with assistance from Michael De Vlieger and Charles R Greathouse IV, respectively.

A257225 Numbers that have at least one divisor containing the digit 8 in base 10.

Original entry on oeis.org

8, 16, 18, 24, 28, 32, 36, 38, 40, 48, 54, 56, 58, 64, 68, 72, 76, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 96, 98, 104, 108, 112, 114, 116, 118, 120, 126, 128, 136, 138, 140, 144, 148, 152, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178
Offset: 1

Views

Author

Jaroslav Krizek, May 07 2015

Keywords

Comments

Numbers k whose concatenation of divisors A037278(k), A176558(k), A243360(k) or A256824(k) contains a digit 8.
A011538 (numbers that contain an 8) is a subsequence. - Michel Marcus, May 19 2015

Examples

			18 is in sequence because the list of divisors of 18: (1, 2, 3, 6, 9, 18) contains digit 8.
		

Crossrefs

Cf. similar sequences with another digit: A209932 (0), A000027 (1), A257219 (2), A257220 (3), A257221 (4), A257222 (5), A257223 (6), A257224 (7), A257226 (9).

Programs

  • Magma
    [n: n in [1..1000] | [8] subset Setseq(Set(Sort(&cat[Intseq(d): d in Divisors(n)])))];
    
  • Maple
    select(t -> has(map(convert,numtheory:-divisors(t),base,10),8), [$1..200]); # Robert Israel, May 14 2015
  • Mathematica
    Select[Range@108, Part[Plus @@ DigitCount@ Divisors@ #, 8] > 0 &]
    Select[Range[200],SequenceCount[Flatten[IntegerDigits/@Divisors[#]],{8}]> 0&] (* Harvey P. Dale, Aug 02 2021 *)
  • PARI
    is(n)=fordiv(n, d, if(setsearch(Set(digits(d)), 8), return(1))); 0
    
  • Python
    from itertools import count, islice
    from sympy import divisors
    def A257225_gen(): return filter(lambda n:any('8' in str(d) for d in divisors(n, generator=True)), count(1))
    A257225_list = list(islice(A257225_gen(), 58)) # Chai Wah Wu, Dec 27 2021

Formula

a(n) ~ n.

Extensions

Mathematica and PARI programs with assistance from Michael De Vlieger and Charles R Greathouse IV, respectively.

A257226 Numbers that have at least one divisor containing the digit 9 in base 10.

Original entry on oeis.org

9, 18, 19, 27, 29, 36, 38, 39, 45, 49, 54, 57, 58, 59, 63, 69, 72, 76, 78, 79, 81, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 108, 109, 114, 116, 117, 118, 119, 126, 129, 133, 135, 138, 139, 144, 145, 147, 149, 152, 153, 156, 158, 159, 162, 169, 171, 174
Offset: 1

Views

Author

Jaroslav Krizek, May 29 2015

Keywords

Comments

Numbers k whose concatenation of divisors A037278(k), A176558(k), A243360(k) or A256824(k) contains a digit 9.
A011539 (numbers that contain a 9) is a subsequence.

Examples

			18 is in sequence because the list of divisors of 18: (1, 2, 3, 6, 9, 18) contains digit 9.
		

Crossrefs

Cf. similar sequences with another digit: A209932 (0), A000027 (1), A257219 (2), A257220 (3), A257221 (4), A257222 (5), A257223 (6), A257224 (7), A257225 (8).

Programs

  • Magma
    [n: n in [1..1000] | [9] subset Setseq(Set(Sort(&cat[Intseq(d): d in Divisors(n)])))];
    
  • Mathematica
    Select[Range@108, Part[Plus @@ DigitCount@ Divisors@ #, 9] > 0 &] (* after Michael De Vlieger *)
  • PARI
    is(n)=fordiv(n, d, if(setsearch(Set(digits(d)), 9), return(1))); 0 \\ after Charles R Greathouse IV
    
  • Python
    from itertools import count, islice
    from sympy import divisors
    def A257226_gen(): return filter(lambda n:any('9' in str(d) for d in divisors(n,generator=True)),count(1))
    A257226_list = list(islice(A257226_gen(),20)) # Chai Wah Wu, Dec 27 2021

Formula

a(n) ~ n.

A243363 Numbers with divisors containing all the digits 0-9 and each digit appears exactly once (in base 10).

Original entry on oeis.org

203457869, 203465789, 203465897, 203468579, 203475869, 203478659, 203485697, 203485769, 203495867, 203548967, 203564897, 203568947, 203574689, 203584679, 203584769, 203594687, 203596847, 203598467, 203645879, 203645987, 203648957, 203654987, 203659487, 203674589
Offset: 1

Views

Author

Jaroslav Krizek, Jun 04 2014

Keywords

Comments

Primes made up of distinct digits except 1.
There are no composite numbers with divisors containing all the digits 0-9 and each digit appears exactly once.
Subsequence of A029743 (primes with distinct digits).
Numbers n such that A243360(n) = 9876543210.
Sequence contains 19558 terms, the last term is a(19558) = 987625403.

Crossrefs

Programs

  • Magma
    [n: n in [1..203457879] | Seqint(Sort(&cat[(Intseq(k)): k in Divisors(n)])) eq 9876543210];
    
  • Mathematica
    Select[Range[203*10^6,204*10^6],Sort[Flatten[IntegerDigits/@ Divisors[#]]] == Range[0,9]&] (* Harvey P. Dale, Aug 22 2016 *)
  • Python
    # generates entire sequence
    from sympy import isprime
    from itertools import permutations as perms
    dist = (int("".join(p)) for p in perms("023456789", 9) if p[0] != "0")
    afull = [k for k in dist if isprime(k)]
    print(afull[:24]) # Michael S. Branicky, Aug 04 2022

A037283 Replace n with concatenation of its odd divisors.

Original entry on oeis.org

1, 1, 13, 1, 15, 13, 17, 1, 139, 15, 111, 13, 113, 17, 13515, 1, 117, 139, 119, 15, 13721, 111, 123, 13, 1525, 113, 13927, 17, 129, 13515, 131, 1, 131133, 117, 15735, 139, 137, 119, 131339, 15, 141, 13721, 143, 111, 13591545, 123, 147, 13, 1749, 1525, 131751
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a037283 = read . concat . (map show) . a182469_row :: Integer -> Integer
    -- Reinhard Zumkeller, May 01 2012
    
  • Mathematica
    dtn[ L_ ] := Fold[ 10#1+#2&, 0, L ] Array[ dtn[ Flatten[ Map[ IntegerDigits, Select[ Divisors[ # ], OddQ ] ] ] ]&, 50 ]
    cod[n_]:=FromDigits[Flatten[IntegerDigits/@Select[Divisors[n],OddQ]]]; Array[cod,60] (* Harvey P. Dale, Jan 24 2014 *)
  • Python
    from sympy import divisors
    def a(n): return int("".join(str(d) for d in divisors(n) if d%2==1))
    print([a(n) for n in range(1, 52)]) # Michael S. Branicky, Dec 31 2020

Extensions

More terms from Erich Friedman

A134681 Number of digits of all the divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 5, 3, 7, 3, 5, 5, 6, 3, 7, 3, 8, 5, 6, 3, 10, 4, 6, 5, 8, 3, 11, 3, 8, 6, 6, 5, 12, 3, 6, 6, 11, 3, 11, 3, 9, 8, 6, 3, 14, 4, 9, 6, 9, 3, 11, 6, 11, 6, 6, 3, 18, 3, 6, 8, 10, 6, 12, 3, 9, 6, 12, 3, 17, 3, 6, 9, 9, 6, 12, 3, 15, 7, 6, 3, 18, 6, 6, 6, 12, 3, 18, 6, 9, 6, 6, 6, 18
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 06 2007

Keywords

Comments

Also number of digits of the concatenation of all divisors of n (A037278). - Jaroslav Krizek, Jun 15 2011

Crossrefs

Programs

  • Maple
    A134681 := proc(n)
        add(A055642(d),d=numtheory[divisors](n)) ;
    end proc:
    seq(A134681(n),n=1..80) ; # R. J. Mathar, Feb 21 2025
  • Mathematica
    Array[Total[IntegerLength[Divisors[#]]]&,100] (* Harvey P. Dale, Jun 08 2013 *)
  • PARI
    a(n) = sumdiv(n, d, #digits(d)); \\ Michel Marcus, Sep 01 2023
    
  • Python
    from sympy import divisors
    def a(n): return sum(len(str(d)) for d in divisors(n, generator=True))
    print([a(n) for n in range(1, 97)]) # Michael S. Branicky, Nov 03 2023

Formula

a(n) = A055642(A037278(n)) = Number of digits of the concatenation of all divisors of n.
From Sida Li, Sep 01 2023: (Start)
a(n) = Sum_{d divides n} (floor(log_10(d))+1).
log_10(Product_{d divides n} d) <= a(n) <= log_10(Product_{d divides n} d) + sigma_0(n), where sigma_0(n) = A000005(n).
Equivalently, sigma_0(n)*log_10(n)/2 <= a(n) <= sigma_0(n)*log_10(n)/2 + sigma_0(n), obtained by formula in A007955.
For x >= 5, c2*log(x)^2 + c1*log(x) + c0 <= (1/x)*Sum_{n<=x} a(n) <= c2*log(x)^2 + (c1+1)*log(x) + 2*c0, where c2 = 1/(2*log(10)), c1 = (gamma-1)/log(10), c0 = 2*gamma-1, and gamma is Euler's constant. This is obtained by hyperbola trick for Sum_{n<=x} sigma_0(n), and Abel partial summation on Sum_{n<=x} sigma_0(n)*log(n). (End)

Extensions

New name from Jaroslav Krizek, Jun 15 2011

A176554 Numbers n such that concatenations of divisors of n are nonprime.

Original entry on oeis.org

1, 2, 4, 5, 6, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 80, 81
Offset: 1

Views

Author

Jaroslav Krizek, Apr 20 2010

Keywords

Comments

See A037278(n) = concatenation of divisors of n. See A176556 for corresponding values of concatenations. Complement of A176553(n) for n >= 2.

Examples

			a(6) = 8: divisors of 8 are 1,2,4,8 and their concatenation 1248 is nonprime.
		

Programs

  • Mathematica
    Select[Range[100],!PrimeQ[FromDigits[Flatten[IntegerDigits/@ Divisors[ #]]]]&] (* Harvey P. Dale, Jul 09 2021 *)

Extensions

Edited and extended by Charles R Greathouse IV, Apr 30 2010

A209931 Numbers k such that smallest digit of all divisors of k is 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 98, 99, 111
Offset: 1

Views

Author

Jaroslav Krizek, Mar 20 2012

Keywords

Comments

Also numbers k such that smallest digit of concatenation of all divisors of k (A037278 or A176558) is 1.
Sequence is not the same as A052382, first deviation is at a(173): A052382(173) = 212, a(173) = 213. [Corrected by Michael S. Branicky, Jul 01 2025.]
Sequence is not the same as A067251, first deviation is at a(91): A067251 (91) = 101, a(91) = 111.
Complement of A209932.

Examples

			Number 24 is in sequence because smallest digit of all divisors of 24 (1, 2, 4, 8, 3, 6, 12, 24) is 1.
		

Crossrefs

Cf. A052382, A067251, A209929 (smallest digit of all divisors of n).

Programs

  • Maple
    isA209931 := proc(n)
        digsdiv := {} ;
        for d in numtheory[divisors](n) do
            dgs := convert(convert(d,base,10),set) ;
            digsdiv := digsdiv union dgs ;
        end do:
        if 0 in digsdiv then
            false;
        else
            true ;
        end if;
    end proc:
    A209931 := proc(n)
        option remember;
        if n =1 then
            1;
        else
            for a from procname(n-1)+1 do
                if isA209931(a) then
                    return a;
                end if;
            end do;
        end if;
    end proc:
    seq(A209931(n),n=1..120) ;# R. J. Mathar, Dec 28 2023
  • Mathematica
    Select[Range[100], Min[IntegerDigits[Divisors[#]]] == 1 &] (* Paolo Xausa, Jul 03 2025 *)
  • Python
    from sympy import divisors
    def ok(n): return all('0' not in str(d) for d in divisors(n, generator=True))
    print([k for k in range(1, 112) if ok(k)]) # Michael S. Branicky, Jul 01 2025

A037277 Replace n with concatenation of its divisors >1.

Original entry on oeis.org

0, 2, 3, 24, 5, 236, 7, 248, 39, 2510, 11, 234612, 13, 2714, 3515, 24816, 17, 236918, 19, 2451020, 3721, 21122, 23, 234681224, 525, 21326, 3927, 2471428, 29, 2356101530, 31, 2481632, 31133, 21734, 5735, 23469121836, 37, 21938, 31339
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a037277 1 = 0
    a037277 n = read $ concat $ map show $ tail $ a027750_row n
    -- Reinhard Zumkeller, May 01 2012, Feb 07 2011
    
  • Mathematica
    FromDigits[Flatten[IntegerDigits/@Rest[Divisors[#]]]]&/@Range[40] (* Harvey P. Dale, Nov 06 2011 *)
  • Python
    from sympy import divisors
    def a(n):
      divisors_gt1 = divisors(n)[1:]
      if len(divisors_gt1) == 0: return 0
      else: return int("".join(str(d) for d in divisors_gt1))
    print([a(n) for n in range(1, 40)]) # Michael S. Branicky, Dec 31 2020

Extensions

More terms from Erich Friedman
Previous Showing 31-40 of 57 results. Next