cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 44 results. Next

A066616 a(1) = 1; a(n) = n*a(n-1) if n does not divide a(n-1), otherwise a(n) = a(n-1).

Original entry on oeis.org

1, 2, 6, 24, 120, 120, 840, 840, 7560, 7560, 83160, 83160, 1081080, 1081080, 1081080, 17297280, 294053760, 294053760, 5587021440, 5587021440, 5587021440, 5587021440, 128501493120, 128501493120, 3212537328000, 3212537328000
Offset: 1

Views

Author

Amarnath Murthy, Dec 24 2001

Keywords

Examples

			a(5) = 120; as 6 divides a(5), we have a(6) = a(5) = 120. Though 9 is not coprime to a(8) but still 9 does not divide a(8) so a(9) = 9 * a(8).
		

Crossrefs

Cf. A003418, A037992 (duplicates removed).
Replacing A059896 with A059897 in the formula gives A284567.

Programs

  • Mathematica
    nxt[{n_,a_}]:={n+1,If[Mod[a,n+1]==0,a,a(n+1)]}; NestList[nxt,{1,1},30][[All,2]] (* Harvey P. Dale, Jul 01 2022 *)
  • PARI
    { for (n=1, 200, if (n==1, a=1, if (a%n, a=n*a)); write("b066616.txt", n, " ", a) ) } \\ Harry J. Smith, Mar 12 2010

Formula

a(1) = 1; for n > 1, a(n) = A059896(a(n-1), n). - Peter Munn, Jul 12 2022

Extensions

More terms from Vladeta Jovovic, Dec 26 2001

A283052 Numbers k such that uphi(k)/phi(k) > uphi(m)/phi(m) for all m < k, where phi(k) is the Euler totient function (A000010) and uphi(k) is the unitary totient function (A047994).

Original entry on oeis.org

1, 4, 8, 16, 32, 36, 72, 144, 216, 288, 432, 864, 1728, 2592, 3600, 5400, 7200, 10800, 21600, 43200, 64800, 108000, 129600, 216000, 259200, 324000, 529200, 1058400, 2116800, 3175200, 5292000, 6350400, 10584000, 12700800, 15876000, 31752000, 63504000, 95256000
Offset: 1

Views

Author

Amiram Eldar, May 19 2017

Keywords

Comments

This sequence is infinite.
a(1) = 1, a(6) = 36, a(15) = 3600 and a(32) = 6350400 are the smallest numbers n such that uphi(n)/phi(n) = 1, 2, 3 and 4. They are squares of 1, 6, 60, and 2520.
Also, coreful superabundant numbers: numbers k with a record value of the coreful abundancy index, A057723(k)/k > A057723(m)/m for all m < k. The two sequences are equivalent since A057723(k)/k = A047994(k)/A000010(k) for all k. - Amiram Eldar, Dec 28 2020

Examples

			uphi(k)/phi(k) = 1, 1, 1, 3/2 for k = 1, 2, 3, 4, thus a(1) = 1 and a(2) = 4 since a(4) > a(m) for m < 4.
		

Crossrefs

Programs

  • Mathematica
    uphi[n_] := If[n == 1, 1, (Times @@ (Table[#[[1]]^#[[2]] - 1, {1}] & /@
    FactorInteger[n]))[[1]]]; a = {}; rmax = 0; For[k = 0, k < 10^9, k++; r = uphi[k]/EulerPhi[k]; If[r > rmax, rmax = r; a = AppendTo[a, k]]]; a
  • PARI
    uphi(n) = my(f = factor(n)); prod(i=1, #f~, f[i,1]^f[i,2]-1);
    lista(nn) = {my(rmax = 0); for (n=1, nn, if ((newr=uphi(n)/eulerphi(n)) > rmax, print1(n, ", "); rmax = newr););} \\ Michel Marcus, May 20 2017

A347064 Smallest number with at least 2^n divisors.

Original entry on oeis.org

1, 2, 6, 24, 120, 840, 7560, 83160, 1081080, 17297280, 294053760, 5587021440, 128501493120, 3212537328000, 93163582512000, 2888071057872000, 106858629141264000, 4381203794791824000, 184010559381256608000, 7912454053394034144000, 371885340509519604768000
Offset: 0

Views

Author

Jon E. Schoenfield, Aug 15 2021

Keywords

Comments

Begins to differ from A037992 at n=18; a(18) < A037992(18), but the number of divisors d(a(18)) = 276480 > 262144 = 2^18.

Examples

			   n                A037992(n)                      a(n)  d(a(n))      2^n
  --  ------------------------  ------------------------  -------  -------
  18     188391763176048432000     184010559381256608000   276480   262144
  19    8854412869274276304000    7912454053394034144000   552960   524288
  20  433866230594439538896000  371885340509519604768000  1105920  1048576
		

Crossrefs

Programs

  • Mathematica
    Table[SelectFirst[Table[{n,DivisorSigma[0,n]},{n,0,11*10^5}],#[[2]]==2^k&],{k,0,8}][[;;,1]] (* The program generates the first nine terms of the sequence. *)  (* Harvey P. Dale, Feb 04 2024 *)

Formula

a(n) = A061799(2^n). - Michel Marcus, Aug 16 2021

A358253 Numbers with a record number of non-unitary square divisors.

Original entry on oeis.org

1, 8, 32, 128, 288, 864, 1152, 2592, 4608, 10368, 20736, 28800, 41472, 64800, 115200, 259200, 518400, 1036800, 2073600, 4147200, 8294400, 9331200, 12700800, 25401600, 50803200, 101606400, 203212800, 406425600, 457228800, 635040000, 812851200, 914457600, 1270080000
Offset: 1

Views

Author

Amiram Eldar, Nov 05 2022

Keywords

Comments

Numbers m such that A056626(m) > A056626(k) for all k < m.
The corresponding record values are 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 20, 22, ... (see the link for more values).

Crossrefs

Subsequence of A025487.
Similar sequences: A002182 (all divisors), A002110 (unitary), A037992 (infinitary), A046952 (square divisors), A053624 (odd divisors), A293185 (bi-unitary), A309141 (non-unitary), A318278 (exponential).

Programs

  • Mathematica
    f1[p_, e_] := 1 + Floor[e/2]; f2[p_, e_] := 2^(1 - Mod[e, 2]); f[1] = 0; f[n_] := Times @@ f1 @@@ (fct = FactorInteger[n]) - Times @@ f2 @@@ fct; s = {}; fmax = -1; Do[If[(fn = f[n]) > fmax, fmax = fn; AppendTo[s, n]], {n, 1, 10^5}]; s
  • PARI
    s(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + floor(f[i,2]/2)) - 2^sum(i = 1, #f~, 1 - f[i,2]%2);}
    lista(nmax) = {my(smax = -1, sn); for(n = 1, nmax, sn = s(n); if(sn > smax, smax = sn; print1(n, ", "))); }

A375271 Partial products of A375270.

Original entry on oeis.org

1, 2, 6, 30, 210, 1680, 18480, 240240, 4084080, 77597520, 1784742960, 48188059920, 1397453737680, 43321065868080, 1602879437118960, 65718056921877360, 2825876447640726480, 132816193039114144560, 7039258231073049661680, 415316235633309930039120, 25334290373631905732386320
Offset: 1

Views

Author

Amiram Eldar, Aug 09 2024

Keywords

Comments

Numbers with a record number of Zeckendorf-infinitary divisors (A318465). Also, indices of records in A318464.
a(n) is the least number k such that A318464(k) = n-1 and A318465(k) = 2^(n-1).

Examples

			A375270 begins with 1, 2, 3, 5, ..., so, a(1) = 1, a(2) = 1 * 2 = 2, a(3) = 1 * 2 * 3 = 6, a(4) = 1 * 2 * 3 * 5 = 30.
		

Crossrefs

Cf. A037992 (analogous with "Fermi-Dirac primes", A050376), A318464, A318465, A375270.
Subsequence of A025487.

Programs

  • Mathematica
    fib[lim_] := Module[{s = {}, f = 1, k = 2}, While[f <= lim, AppendTo[s, f]; k += 2; f = Fibonacci[k]]; s];
    seq[max_] := Module[{s = {}, p = 2, e = 1, f = {}}, While[e > 0, e = Floor[Log[p, max]]; If[f == {}, f = fib[e], f = Select[f, # <= e &]]; s = Join[s, p^f]; p = NextPrime[p]]; FoldList[Times, 1, Sort[s]]]; seq[100]
  • PARI
    fib(lim) = {my(s = List(), f = 1, k = 2); while(f <= lim, listput(s, f); k += 2; f = fibonacci(k)); Vec(s);}
    lista(pmax) = {my(s = [1], p = 2, e = 1, f = [], r = 1); while(e > 0, e = logint(pmax, p); if(#f == 0, f = fib(e), f = select(x -> x <= e, f)); s = concat(s, apply(x -> p^x, f)); p = nextprime(p+1)); s = vecsort(s); for(i = 1, #s, r *= s[i]; print1(r, ", "))}

Formula

a(n) = Product_{k=1..n} A375270(k).

A343087 a(n) is the smallest prime p such that tau(p-1) = 2^n.

Original entry on oeis.org

3, 7, 31, 211, 1321, 7561, 120121, 1580041, 24864841, 328648321, 7558911361, 162023621761, 5022732274561, 93163582512001, 4083134943888001, 151075992923856001, 5236072827921936001, 188391763176048432001, 8854412869274276304001, 469283882071536644112001, 29844457947060064452144001, 1917963226026370264485744001
Offset: 1

Views

Author

Jaroslav Krizek, Apr 04 2021 (following a suggestion of Vaclav Kotesovec)

Keywords

Comments

tau(m) = the number of divisors of m (A000005).
Sequences of primes p such that tau(p-1) = 2^n for 2 <= n <= 5:
n = 2: 7, 11, 23, 47, 59, 83, 107, 167, 179, ... (A005385(k) for k >= 2).
n = 3: 31, 41, 43, 67, 71, 79, 89, 103, 131, 137, 139, 191, ...
n = 4: 211, 271, 281, 313, 331, 379, 409, 457, 463, 521, 547, ...
n = 5: 1321, 2281, 2311, 2377, 2689, 2731, 2857, 2971, 3001, ...
Conjecture: a(n) is also the smallest number m such that tau(m-1) = tau(m)^n.

Examples

			For n = 4; a(4) = 211 because 211 is the smallest prime p such that tau(p - 1) = 2^4; tau(210) = 16.
		

Crossrefs

Programs

  • Magma
    Ax:=func; [Ax(n): n in [1..9]]
    
  • Python
    from sympy import isprime,nextprime
    primes=[2]
    def solve(v,k,i,j):
        global record,stack,primes
        if k==0:
            if isprime(v+1):
                record=v
            return
        while True:
            if i>=len(primes):
                primes.append(nextprime(primes[-1]))
            if jBert Dobbelaere, Apr 11 2021

Extensions

a(11) from Vaclav Kotesovec, Apr 05 2021
More terms from Bert Dobbelaere, Apr 11 2021

A348273 Noninfinitary superabundant numbers: numbers m such that nisigma(m)/m > nisigma(k)/k for all k < m, where nisigma(m) is the sum of noninfinitary divisors of m (A348271).

Original entry on oeis.org

1, 4, 12, 16, 36, 48, 144, 720, 3600, 25200, 176400, 226800, 1587600, 1940400, 2494800, 17463600, 32432400, 192099600, 227026800, 2497294800, 3632428800, 32464832400, 39956716800
Offset: 1

Views

Author

Amiram Eldar, Oct 09 2021

Keywords

Comments

The least term k with A348271(k)/k > m for m = 1, 2, 3, .... is 36, 3600, 1587600, ...

Crossrefs

Cf. A348271.
Subsequence of A348272.
The noninfinitary version of A004394.
Similar sequences: A002110 (unitary), A037992 (infinitary), A061742 (exponential), A292984, A329882.

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ f @@@ FactorInteger[n]; s[n_] := DivisorSigma[1,n] - isigma[n]; seq = {}; rm = -1; Do[r1 = s[n]/n; If[r1 > rm, rm = r1; AppendTo[seq, n]],{n, 1, 10^6}]; seq

A348342 Noninfinitary highly composite numbers: where the number of noninfinitary divisors (A348341) increases to a record.

Original entry on oeis.org

1, 4, 12, 16, 36, 48, 144, 240, 576, 720, 1680, 2880, 3600, 5040, 11520, 14400, 15120, 20160, 25200, 45360, 55440, 80640, 100800, 166320, 176400, 226800, 277200, 498960, 720720, 887040, 1108800, 1587600, 1940400, 2494800, 3603600, 6486480, 9979200, 11531520, 14414400
Offset: 1

Views

Author

Amiram Eldar, Oct 13 2021

Keywords

Comments

The record numbers of noninfinitary divisors are 0, 1, 2, 3, 5, 6, 11, 12, 13, 22, 24, 26, 37, 44, 46, ... (see the link for more values).

Crossrefs

Cf. A348341.
Subsequence of A025487.
Similar sequences: A002182, A002110 (unitary), A037992 (infinitary), A293185, A306736, A307845, A309141, A318278, A322484, A335386.

Programs

  • Mathematica
    nid[1] = 0; nid[n_] := DivisorSigma[0, n] - Times @@ Flatten[2^DigitCount[#, 2, 1] & /@ FactorInteger[n][[;; , 2]]]; dm = -1; s = {}; Do[If[(d = nid[n]) > dm, dm = d; AppendTo[s, n]], {n, 1, 10^6}]; s

A348632 Nonexponential highly composite numbers: where the number of nonexponential divisors (A160097) increases to a record.

Original entry on oeis.org

1, 6, 12, 24, 30, 60, 120, 210, 240, 360, 420, 720, 840, 1260, 1680, 2520, 3360, 5040, 7560, 9240, 10080, 15120, 18480, 25200, 27720, 36960, 50400, 55440, 83160, 110880, 166320, 221760, 277200, 332640, 480480, 498960, 554400, 665280, 720720, 1081080, 1441440
Offset: 1

Views

Author

Amiram Eldar, Oct 26 2021

Keywords

Comments

The corresponding record values are 1, 3, 4, 6, 7, 10, 14, 15, 17, 20, 22, 24, ... (see the link for more values).

Crossrefs

Cf. A160097.
Subsequence of A025487.
Similar sequences: A002182, A002110 (unitary), A037992 (infinitary), A293185, A306736, A307845, A309141, A318278, A322484, A335386.

Programs

  • Mathematica
    f1[p_, e_] := e + 1; f2[p_, e_] := DivisorSigma[0, e]; ned[1] = 1; ned[n_] := Times @@ f1 @@@ (f = FactorInteger[n]) - Times @@ f2 @@@ f; dm = -1; s = {}; Do[If[(d = ned[n]) > dm, dm = d; AppendTo[s, n]], {n, 1, 10^6}]; s

A353899 Indices of records in A353898.

Original entry on oeis.org

1, 2, 4, 6, 12, 30, 36, 60, 180, 420, 900, 1260, 4620, 6300, 13860, 44100, 55440, 69300, 180180, 485100, 720720, 900900, 3063060, 6306300, 12252240, 15315300, 58198140, 107207100, 232792560, 290990700, 1163962800, 2036934900, 5354228880, 6692786100, 22406283900
Offset: 1

Views

Author

Amiram Eldar, May 10 2022

Keywords

Comments

First differs from A333931 at n=23.
The corresponding record values are 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 27, 36, 48, 54, 72, 81, 96, 108, 144, 162, ... (see the link for more values).

Crossrefs

Subsequence of A025487 and A138302.
Similar sequences: A002182, A002110 (unitary), A037992 (infinitary), A293185, A306736, A307845, A309141, A318278, A322484, A335386.

Programs

  • Mathematica
    f[p_, e_] := Floor[Log2[e]] + 2; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; seq = {}; sm = 0; Do[s1 = s[n]; If[s1 > sm, sm = s1; AppendTo[seq, n]], {n, 1, 10^6}]; seq
Previous Showing 21-30 of 44 results. Next