cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 48 results. Next

A039703 a(n) = n-th prime modulo 5.

Original entry on oeis.org

2, 3, 0, 2, 1, 3, 2, 4, 3, 4, 1, 2, 1, 3, 2, 3, 4, 1, 2, 1, 3, 4, 3, 4, 2, 1, 3, 2, 4, 3, 2, 1, 2, 4, 4, 1, 2, 3, 2, 3, 4, 1, 1, 3, 2, 4, 1, 3, 2, 4, 3, 4, 1, 1, 2, 3, 4, 1, 2, 1, 3, 3, 2, 1, 3, 2, 1, 2, 2, 4, 3, 4, 2, 3, 4, 3, 4, 2, 1, 4, 4, 1, 1, 3, 4, 3, 4, 2, 1, 3, 2, 4, 2, 1, 4, 3, 4, 1, 3, 1, 2, 2, 3, 4, 1
Offset: 1

Views

Author

Keywords

Comments

a(A049084(A045356(n-1))) = even; a(A049084(A045429(n-1))) = odd. - Reinhard Zumkeller, Feb 25 2008

Crossrefs

Programs

Formula

Sum_k={1..n} a(k) ~ (5/2)*n. - Amiram Eldar, Dec 11 2024

A039715 Primes modulo 17.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 0, 2, 6, 12, 14, 3, 7, 9, 13, 2, 8, 10, 16, 3, 5, 11, 15, 4, 12, 16, 1, 5, 7, 11, 8, 12, 1, 3, 13, 15, 4, 10, 14, 3, 9, 11, 4, 6, 10, 12, 7, 2, 6, 8, 12, 1, 3, 13, 2, 8, 14, 16, 5, 9, 11, 4, 1, 5, 7, 11, 8, 14, 7, 9, 13, 2, 10, 16, 5
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

By the Prime Number Theorem in Arithmetic Progressions, all nonzero residue classes are equiprobable. In particular, Sum_{k=1..n} a(k) ~ 8.5n. - Charles R Greathouse IV, Apr 16 2012

A242119 Primes modulo 18.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 1, 5, 11, 13, 1, 5, 7, 11, 17, 5, 7, 13, 17, 1, 7, 11, 17, 7, 11, 13, 17, 1, 5, 1, 5, 11, 13, 5, 7, 13, 1, 5, 11, 17, 1, 11, 13, 17, 1, 13, 7, 11, 13, 17, 5, 7, 17, 5, 11, 17, 1, 7, 11, 13, 5, 1, 5, 7, 11, 7, 13, 5, 7, 11, 17, 7, 13, 1, 5
Offset: 1

Views

Author

Vincenzo Librandi, May 05 2014

Keywords

Crossrefs

Cf. sequences of the type Primes mod k: A039701 (k=3), A039702 (k=4), A039703 (k=5), A039704 (k=6), A039705 (k=7), A039706 (k=8), A038194 (k=9), A007652 (k=10), A039709 (k=11), A039710 (k=12), A039711 (k=13), A039712 (k=14), A039713 (k=15), A039714 (k=16), A039715 (k=17), this sequence (k=18), A033633 (k=19), A242120(k=20), A242121 (k=21), A242122 (k=22), A229786 (k=23), A229787 (k=24), A242123 (k=25), A242124 (k=26), A242125 (k=27), A242126 (k=28), A242127 (k=29), A095959 (k=30), A110923 (k=100).

Programs

  • Magma
    [p mod(18): p in PrimesUpTo(500)];
    
  • Mathematica
    Mod[Prime[Range[100]], 18]
  • Sage
    [mod(p, 18) for p in primes(500)] # Bruno Berselli, May 05 2014

Formula

Sum_{i=1..n} a(i) ~ 9n. The derivation is the same as in the formula in A039715. - Jerzy R Borysowicz, Apr 27 2022

A039704 a(n) = n-th prime modulo 6.

Original entry on oeis.org

2, 3, 5, 1, 5, 1, 5, 1, 5, 5, 1, 1, 5, 1, 5, 5, 5, 1, 1, 5, 1, 1, 5, 5, 1, 5, 1, 5, 1, 5, 1, 5, 5, 1, 5, 1, 1, 1, 5, 5, 5, 1, 5, 1, 5, 1, 1, 1, 5, 1, 5, 5, 1, 5, 5, 5, 5, 1, 1, 5, 1, 5, 1, 5, 1, 5, 1, 1, 5, 1, 5, 5, 1, 1, 1, 5, 5, 1, 5, 1, 5, 1, 5, 1, 1, 5, 5, 1, 5, 1, 5, 5, 1, 5, 1, 5, 5, 5, 1, 1, 1, 5, 5, 5, 1
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

Sum_k={1..n} a(k) ~ 3*n. - Amiram Eldar, Dec 11 2024

A039705 a(n) = n-th prime modulo 7.

Original entry on oeis.org

2, 3, 5, 0, 4, 6, 3, 5, 2, 1, 3, 2, 6, 1, 5, 4, 3, 5, 4, 1, 3, 2, 6, 5, 6, 3, 5, 2, 4, 1, 1, 5, 4, 6, 2, 4, 3, 2, 6, 5, 4, 6, 2, 4, 1, 3, 1, 6, 3, 5, 2, 1, 3, 6, 5, 4, 3, 5, 4, 1, 3, 6, 6, 3, 5, 2, 2, 1, 4, 6, 3, 2, 3, 2, 1, 5, 4, 5, 2, 3, 6, 1, 4, 6, 5, 2, 1, 2, 6, 1, 5, 3, 4, 1, 2, 6, 5, 3, 5, 2, 1, 4, 3, 2, 4
Offset: 1

Views

Author

Keywords

Comments

a(A049084(A045370(n-1))) is even; a(A049084(A045415(n-1))) is odd. - Reinhard Zumkeller, Feb 25 2008

Crossrefs

Programs

Formula

Sum_k={1..n} a(k) ~ (7/2)*n. - Amiram Eldar, Dec 11 2024

A229875 Iterated sum-of-digits of palindromic prime; or digital root of palindromic prime.

Original entry on oeis.org

2, 3, 5, 7, 2, 2, 5, 7, 1, 2, 7, 2, 4, 5, 7, 1, 4, 5, 1, 2, 5, 7, 8, 7, 8, 1, 4, 5, 2, 7, 8, 4, 8, 7, 8, 5, 8, 1, 2, 2, 7, 1, 4, 5, 1, 2, 7, 8, 1, 4, 5, 8, 4, 4, 5, 8, 1, 4, 7, 8, 1, 5, 2, 5, 4, 7, 4, 5, 2, 8, 7, 1, 2, 1, 7, 2, 7, 2, 4, 8, 4, 2, 2, 2, 5, 4
Offset: 1

Views

Author

Shyam Sunder Gupta, Oct 02 2013

Keywords

Comments

Integers with digital root 3, 6 or 9 are divisible by 3, so 3 is the only palindromic prime with digital root 3 and there are no palindromic primes with digital root 6 or 9.

Examples

			a(7)=5 because the 7th palindromic prime is 131 and 1+3+1 = 5.
		

Crossrefs

Programs

  • Mathematica
    t = {}; Do[z = n*10^(IntegerLength[n] - 1) + FromDigits@Rest@Reverse@IntegerDigits[n]; If[PrimeQ[z], AppendTo[t, Mod[z, 9]]], {n, 1, 99999}]; Insert[t, 2, 5]
    Mod[#,9]&/@Select[Prime[Range[9000]],PalindromeQ] (* Harvey P. Dale, Mar 25 2025 *)

Formula

a(n) = A010888(A002385(n)). - R. J. Mathar, Sep 09 2015

A258876 Integers k such that both k and prime(k) have the same digital root.

Original entry on oeis.org

25, 32, 46, 56, 70, 88, 92, 98, 100, 113, 121, 130, 145, 146, 152, 175, 176, 182, 185, 206, 209, 212, 218, 227, 236, 239, 244, 248, 274, 293, 295, 301, 316, 317, 320, 323, 331, 338, 350, 352, 355, 362, 377, 386, 394, 397, 398, 406, 409, 413, 439
Offset: 1

Views

Author

Zak Seidov, Jun 13 2015

Keywords

Comments

Integers k such that A010888(k) = A038194(k).
Conjecture: a(n) ~ 9n. - Charles R Greathouse IV, Jun 17 2015

Examples

			Both 25 and prime(25) = 97 have 7 for a digital root.
Both 32 and prime(32) = 131 have 5 for a digital root.
		

Crossrefs

Programs

  • Mathematica
    Reap[Do[If[FixedPoint[Total[IntegerDigits[#]] &, n] == Mod[Prime[n], 9], Sow[n]], {n, 439}]][[2, 1]] (* Seidov *)
    Select[Range[500], Mod[#, 9] == Mod[Prime[#], 9] &] (* Alonso del Arte, Jun 17 2015 *)
  • PARI
    isok(n) = (n % 9) == (prime(n) % 9); \\ Michel Marcus, Jun 17 2015
    
  • PARI
    n=0; forprime(p=2,1e4, if((p-n++)%9==0, print1(n", "))) \\ Charles R Greathouse IV, Jun 17 2015

A039710 a(n) = n-th prime modulo 12.

Original entry on oeis.org

2, 3, 5, 7, 11, 1, 5, 7, 11, 5, 7, 1, 5, 7, 11, 5, 11, 1, 7, 11, 1, 7, 11, 5, 1, 5, 7, 11, 1, 5, 7, 11, 5, 7, 5, 7, 1, 7, 11, 5, 11, 1, 11, 1, 5, 7, 7, 7, 11, 1, 5, 11, 1, 11, 5, 11, 5, 7, 1, 5, 7, 5, 7, 11, 1, 5, 7, 1, 11, 1, 5, 11, 7, 1, 7, 11, 5, 1, 5, 1, 11
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

Sum_k={1..n} a(k) ~ 6*n. - Amiram Eldar, Dec 11 2024

A039711 a(n) = n-th prime modulo 13.

Original entry on oeis.org

2, 3, 5, 7, 11, 0, 4, 6, 10, 3, 5, 11, 2, 4, 8, 1, 7, 9, 2, 6, 8, 1, 5, 11, 6, 10, 12, 3, 5, 9, 10, 1, 7, 9, 6, 8, 1, 7, 11, 4, 10, 12, 9, 11, 2, 4, 3, 2, 6, 8, 12, 5, 7, 4, 10, 3, 9, 11, 4, 8, 10, 7, 8, 12, 1, 5, 6, 12, 9, 11, 2, 8, 3, 9, 2, 6, 12, 7, 11, 6
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

Sum_k={1..n} a(k) ~ (13/2)*n. - Amiram Eldar, Dec 11 2024

A039712 a(n) = n-th prime modulo 14.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 3, 5, 9, 1, 3, 9, 13, 1, 5, 11, 3, 5, 11, 1, 3, 9, 13, 5, 13, 3, 5, 9, 11, 1, 1, 5, 11, 13, 9, 11, 3, 9, 13, 5, 11, 13, 9, 11, 1, 3, 1, 13, 3, 5, 9, 1, 3, 13, 5, 11, 3, 5, 11, 1, 3, 13, 13, 3, 5, 9, 9, 1, 11, 13, 3, 9, 3, 9, 1, 5, 11, 5, 9
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

Sum_k={1..n} a(k) ~ 7*n. - Amiram Eldar, Dec 12 2024
Previous Showing 11-20 of 48 results. Next