cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A257618 Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 8*x + 2.

Original entry on oeis.org

1, 2, 2, 4, 40, 4, 8, 472, 472, 8, 16, 4928, 16992, 4928, 16, 32, 49824, 433984, 433984, 49824, 32, 64, 499584, 9505728, 22567168, 9505728, 499584, 64, 128, 4999040, 192085632, 909941120, 909941120, 192085632, 4999040, 128
Offset: 0

Views

Author

Dale Gerdemann, May 09 2015

Keywords

Examples

			Triangle begins as:
    1;
    2,       2;
    4,      40,         4;
    8,     472,       472,         8;
   16,    4928,     16992,      4928,        16;
   32,   49824,    433984,    433984,     49824,        32;
   64,  499584,   9505728,  22567168,   9505728,    499584,      64;
  128, 4999040, 192085632, 909941120, 909941120, 192085632, 4999040, 128;
		

Crossrefs

Cf. A000079, A144828 (row sums), A167884.
Similar sequences listed in A256890.

Programs

  • Mathematica
    T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
    Table[T[n,k,8,2], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 24 2022 *)
  • Sage
    def T(n,k,a,b): # A257618
        if (k<0 or k>n): return 0
        elif (n==0): return 1
        else: return  (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b)
    flatten([[T(n,k,8,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 24 2022

Formula

T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 8*x + 2.
Sum_{k=0..n} T(n, k) = A144828(n).
From G. C. Greubel, Mar 24 2022: (Start)
T(n, k) = (a*k + b)*T(n-1, k) + (a*(n-k) + b)*T(n-1, k-1), with T(n, 0) = 1, a = 8, and b = 2.
T(n, n-k) = T(n, k).
T(n, 0) = A000079(n).
T(n, 1) = 2^(n-1)*(5^n - 2*n - 1).
T(n, 2) = 2^(n-3)*(3^(2*n+1) -2*(2*n+1)*5^n -1 +4*n^2). (End)

A300184 Irregular triangle read by rows: row n consists of the coefficients of the expansion of the polynomial (2*x + 2)^n + (x^2 - 1)*(x + 2)^n.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 1, 0, 4, 7, 4, 1, 0, 12, 26, 19, 6, 1, 0, 32, 88, 88, 39, 8, 1, 0, 80, 272, 360, 230, 71, 10, 1, 0, 192, 784, 1312, 1140, 532, 123, 12, 1, 0, 448, 2144, 4368, 4872, 3164, 1162, 211, 14, 1, 0, 1024, 5632, 13568, 18592, 15680, 8176, 2480, 367, 16, 1, 0, 2304, 14336, 39936, 65088, 67872, 46368, 20304, 5262, 655, 18, 1
Offset: 0

Views

Author

Keywords

Comments

Let L(n;x) = x*(2*x + 2)^n. Then T(n,k) is obtained from the expansion of the polynomial P(n;x) = (x + 2)*P(n-1;x) + L(n-1;x), with P(0;x) = x^2.
Let an n-chain link be the planar diagram that consists of n unknotted circles, linked together in a closed chain. Then T(n,k) is the number of diagrams having k components that are obtained by smoothing each double point (crossing). Kauffman defines the 'smoothing' of a framed 4-graph at a vertex v as "any of the two framed 4-graphs obtained by removing v and repasting the edges" (see links).

Examples

			The triangle T(n,k) begins:
n\k  0     1      2      3      4      5      6      7     8    9  10 11
0:   0     0      1
1:   0     1      2      1
2:   0     4      7      4      1
3:   0    12     26     19      6      1
4:   0    32     88     88     39      8      1
5:   0    80    272    360    230     71     10      1
6:   0   192    784   1312   1140    532    123     12     1
7:   0   448   2144   4368   4872   3164   1162    211    14    1
8:   0  1024   5632  13568  18592  15680   8176   2480   367   16   1
9:   0  2304  14336  39936  65088  67872  46368  20304  5262  655  18  1
		

Crossrefs

Row sums: A000302 (powers of 4).

Programs

  • Mathematica
    With[{nmax = 15}, CoefficientList[CoefficientList[Series[(x^2 + y*x/(1 - y*(2*x + 2)))/(1 - y*(x + 2)), {x, 0, nmax + 2}, {y, 0, nmax}], y], x]] // Flatten (* G. C. Greubel, Oct 18 2018 *)
    Table[SeriesCoefficient[x^2*(x+2)^n + x*Sum[(x+2)^(n-j-1)*(2*x+2)^j, {j, 0, n-1}], {x, 0, k}], {n, 0, 10}, {k, 0, n+2}]//Flatten  (* Michael De Vlieger, Oct 20 2018 *)
  • Maxima
    T(n, k) := ratcoef((2*x + 2)^n + (x^2 - 1)*(x + 2)^n, x, k)$
    create_list(T(n, k), n, 0, 10, k, 0, n + 2);
    
  • PARI
    {T(n,k) = if(k==0, 0, if(k==1, n*2^(n-1), if(k==n+2, 1, T(n-1, k-1) + 2*T(n-1,k) + 2^(n-1)*binomial(n-1,k-1) )))};
    for(n=0,10, for(k=0,n+2, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 20 2018

Formula

T(n,0) = 0, T(n,1) = n*2^(n-1), T(0,2) = 1 and T(n,k) = T(n-1,k-1) + 2*T(n-1,k) + A038208(n-1,k-1).
T(n,1) = A001787(n).
T(n,n) = A295077(n).
T(n,n+1) = A005843(n).
G.f.: (x^2 + y*x/(1 - y*(2*x + 2)))/(1 - y*(x + 2)).

Extensions

New name by Franck Maminirina Ramaharo, Oct 17 2018

A130123 Infinite lower triangular matrix with 2^k in the right diagonal and the rest zeros. Triangle, T(n,k), n zeros followed by the term 2^k. Triangle by columns, (2^k, 0, 0, 0, ...).

Original entry on oeis.org

1, 0, 2, 0, 0, 4, 0, 0, 0, 8, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 64, 0, 0, 0, 0, 0, 0, 0, 128, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 512, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2048, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4096
Offset: 0

Views

Author

Gary W. Adamson, May 11 2007

Keywords

Comments

A 2^n transform matrix.
Triangle T(n,k), 0 <= k <= n, given by [0,0,0,0,0,0,...] DELTA [2,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, May 26 2007
Also the Bell transform of A000038. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016
T is the convolution triangle of the characteristic function of 2 (see A357368). - Peter Luschny, Oct 19 2022

Examples

			First few terms of the triangle:
  1;
  0, 2;
  0, 0, 4;
  0, 0, 0, 8;
  0, 0, 0, 0, 16;
  0, 0, 0, 0,  0, 32; ...
		

Crossrefs

Programs

  • Magma
    [[k eq n select 2^n else 0: k in [0..n]]: n in [0..14]]; // G. C. Greubel, Jun 05 2019
    
  • Maple
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> `if`(n=0,2,0), 9); # Peter Luschny, Jan 27 2016
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> ifelse(n=1, 2, 0)); # Peter Luschny, Oct 19 2022
  • Mathematica
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 12;
    M = BellMatrix[If[# == 0, 2, 0]&, rows];
    Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
    Table[If[k==n, 2^n, 0], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 05 2019 *)
  • PARI
    {T(n,k) = if(k==n, 2^n, 0)}; \\ G. C. Greubel, Jun 05 2019
    
  • Sage
    def T(n, k):
        if (k==n): return 2^n
        else: return 0
    [[T(n, k) for k in (0..n)] for n in (0..14)] # G. C. Greubel, Jun 05 2019

Formula

G.f.: 1/(1-2*x*y). - R. J. Mathar, Aug 11 2015

A154690 Triangle read by rows: T(n, k) = (2^(n-k) + 2^k)*binomial(n,k), 0 <= k <= n.

Original entry on oeis.org

2, 3, 3, 5, 8, 5, 9, 18, 18, 9, 17, 40, 48, 40, 17, 33, 90, 120, 120, 90, 33, 65, 204, 300, 320, 300, 204, 65, 129, 462, 756, 840, 840, 756, 462, 129, 257, 1040, 1904, 2240, 2240, 2240, 1904, 1040, 257, 513, 2322, 4752, 6048, 6048, 6048, 6048, 4752, 2322, 513
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Jan 14 2009

Keywords

Comments

From G. C. Greubel, Jan 18 2025: (Start)
A more general triangle of coefficients may be defined by T(n, k, p, q) = (p^(n-k)*q^k + p^k*q^(n-k))*A007318(n, k). When (p, q) = (2, 1) this sequence is obtained.
Some related triangles are:
(p, q) = (1, 1) : 2*A007318(n,k).
(p, q) = (2, 2) : 2*A038208(n,k).
(p, q) = (3, 2) : A154692(n,k).
(p, q) = (3, 3) : 2*A038221(n,k). (End)

Examples

			Triangle begins as:
     2;
     3,    3;
     5,    8,     5;
     9,   18,    18,     9;
    17,   40,    48,    40,    17;
    33,   90,   120,   120,    90,    33;
    65,  204,   300,   320,   300,   204,    65;
   129,  462,   756,   840,   840,   756,   462,   129;
   257, 1040,  1904,  2240,  2240,  2240,  1904,  1040,   257;
   513, 2322,  4752,  6048,  6048,  6048,  6048,  4752,  2322,  513;
  1025, 5140, 11700, 16320, 16800, 16128, 16800, 16320, 11700, 5140, 1025;
		

Crossrefs

Cf. A215149.
Sums include: A008776 (row), A010673 (alternating sign row).
Columns k: A000051 (k=0).
Main diagonal: A059304.

Programs

  • Magma
    A154690:= func< n,k | (2^(n-k)+2^k)*Binomial(n,k) >;
    [A154690(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 18 2025
    
  • Maple
    A154690 := proc(n,m) binomial(n,m)*(2^(n-m)+2^m) ; end proc: # R. J. Mathar, Jan 13 2011
  • Mathematica
    T[n_, m_]:= (2^(n-m) + 2^m)*Binomial[n,m];
    Table[T[n,m], {n,0,12}, {m,0,n}]//Flatten
  • Python
    from sage.all import *
    def A154690(n,k): return (pow(2,n-k)+pow(2,k))*binomial(n,k)
    print(flatten([[A154690(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 18 2025

Formula

T(n, k) = (2^(n-k) + 2^k)*A007318(n, k).
Sum_{k=0..n} T(n, k) = A008776(n) = A025192(n+1).
From G. C. Greubel, Jan 18 2025: (Start)
T(n, n-k) = T(n, k) (symmetry).
T(n, 1) = n + A215149(n), n >= 1.
T(2*n-1, n) = 3*A069720(n).
Sum_{k=0..n} (-1)^k*T(n, k) = A010673(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A000129(n+1) + A001045(n+1).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = n+1 + A107920(n+1). (End)

A099040 Riordan array (1, 2+2x).

Original entry on oeis.org

1, 0, 2, 0, 2, 4, 0, 0, 8, 8, 0, 0, 4, 24, 16, 0, 0, 0, 24, 64, 32, 0, 0, 0, 8, 96, 160, 64, 0, 0, 0, 0, 64, 320, 384, 128, 0, 0, 0, 0, 16, 320, 960, 896, 256, 0, 0, 0, 0, 0, 160, 1280, 2688, 2048, 512, 0, 0, 0, 0, 0, 32, 960, 4480, 7168, 4608, 1024, 0, 0, 0, 0, 0, 0, 384, 4480, 14336, 18432, 10240, 2048
Offset: 0

Views

Author

Paul Barry, Sep 23 2004

Keywords

Comments

Row sums give A002605. Diagonal sums give A052907.
The Riordan array (1,s+t*x) defines T(n,k) = binomial(k,n-k)*s^k*(t/s)^(n-k). The row sums satisfy a(n) = s*a(n-1) + t*a(n-2) and the diagonal sums satisfy a(n) = s*a(n-2) + t*a(n-3).
T(n,k) is the number of compositions of n into two types of parts of size 1 and 2 that have exactly k parts. - Geoffrey Critzer, Aug 18 2012.
Triangle T(n,k), 0<=k<=n, read by rows, given by [0, 1, -1, 0, 0, 0, 0, ...] DELTA [2, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Sep 22 2020

Examples

			Rows begin {1}, {0,2}, {0,2,4}, {0,0,8,8}, {0,0,4,24,16}, {0,0,0,24,64,32},...
T(3,2)=8 because we have: 1+2,1+2',1'+2,1'+2',2+1,2+1',2'+1,2'+1' where a part of the second type is designated by '. - _Geoffrey Critzer_, Aug 18 2012
		

Crossrefs

Programs

  • Mathematica
    nn = 8; CoefficientList[Series[1/(1 - 2 y x - 2 y x^2), {x, 0, nn}], {x, y}] // Grid  (* Geoffrey Critzer, Aug 18 2012 *)

Formula

Number triangle T(n, k) = 2^k*binomial(k, n-k).
Columns have g.f. (2x+2x^2)^k.
T(n,k) = A026729(n,k)*2^k. - Philippe Deléham, Jul 28 2006
O.g.f.: 1/(1-2*y*x-2*y*x^2). - Geoffrey Critzer, Aug 18 2012.

A308737 Triangle of scaled 1-tiered binomial coefficients, T(n,k) = 2^(n+1)*(n-k,k)_1 (n >= 0, 0 <= k <= n), where (N,M)_1 is the 1-tiered binomial coefficient.

Original entry on oeis.org

1, 1, 3, 1, 8, 7, 1, 17, 31, 15, 1, 34, 96, 94, 31, 1, 67, 258, 382, 253, 63, 1, 132, 645, 1280, 1275, 636, 127, 1, 261, 1545, 3845, 5115, 3831, 1531, 255, 1, 518, 3598, 10766, 17920, 17906, 10738, 3578, 511, 1, 1031, 8212, 28700, 57358, 71666, 57316, 28652, 8185, 1023
Offset: 0

Views

Author

Michel Marcus, Jun 21 2019

Keywords

Examples

			From _Petros Hadjicostas_, Jul 07 2020: (Start)
Square array for (N,M)_1 of 1-tiered binomial coefficients (N, M >= 0):
  1/2,   3/4,    7/8,     15/16,   31/32,     63/64,   127/128, ...
  1/4,    1,    31/16,    47/16,  253/64,    159/32,  1531/256, ...
  1/8,  17/16,    3,     191/32, 1275/128,  3831/256,  5369/256, ...
  1/16, 17/16, 129/32,     10,   5115/256,  8953/256, 14329/256, ...
  1/32, 67/64, 645/128, 3845/256,   35,    35833/512, 129003/1024, ...
  ... (End)
Triangle (n-k,k)_1 of 1-tiered binomial coefficients (n >= 0 and k = 0..n):
  1/2,
  1/4,    3/4,
  1/8,     1,    7/8,
  1/16,  17/16, 31/16, 15/16,
  1/32,  17/16,   3,   47/16, 31/32,
  ...
Scaled triangle T(n,k) after multiplying each row by 2^(n+1):
  1,
  1,  3,
  1,  8,  7,
  1, 17, 31, 15,
  1, 34, 96, 94, 31,
  ...
		

Crossrefs

Cf. A007318 (Pascal triangle: 0-tiered binomial coefficient), A038208, A145071 (column k = 1).

Programs

  • Mathematica
    rows = 10;
    cc = CoefficientList[# + O[y]^rows, y]& /@ CoefficientList[(1-x)/((1-x-y)* (2-x-y)) + O[x]^rows, x];
    T[n_, m_, 1] := cc[[n-m+1, m+1]];
    Table[2^(n+1) Table[T[n, m, 1], {m, 0, n}], {n, 0, rows-1}] (* Jean-François Alcover, Jun 21 2019 *)
  • PARI
    T(n,m) = if ((n==0) && (m==0), 1/2, binomial(n+m-1, m-1) - (binomial(n+m,n)/2 - binomial(n+m-1,n-1))/2^(n+m));
    TT(n, k) = T(n-k, k);
    tabls(nn) = for (n=0, nn, for (k=0, n, print1(2^(n+1)*TT(n, k), ", ")));

Formula

Scaled coefficients satisfy T(n,0) = 1 for n >= 0 and T(n,k) = T(n-1,k) + T(n-1,k-1) + 2^n*C(n-1,k-1) for n >= k+1 >= 1. - Charlie Neder, Jun 21 2019 [Corrected by Petros Hadjicostas, Jul 06 2020]
From Petros Hadjicostas, Jul 07 2020: (Start)
(N,M)_1 + (M,N)_1 = (N,M)_0 = binomial(N+M, N) for N, M >= 0.
(n-k,k)_1 + (k, n-k)_1 = binomial(n,k) for n >= k >= 0.
T(n,k) + T(n,n-k) = 2^(n+1)*binomial(n,k) = 2*A038208(n,k) for n >= k >= 0.
T(n,k) = 2^(n + 1)*binomial(n-1, k-1) + 2*binomial(n-1,k) - binomial(n,k) for n >= k >= 0 and (n,k) <> (0,0) with T(0,0) = 1.
G.f. for T(n,k): (1 - 2*x)/((1 - 2*x*(1 + y))*(1 - x*(1 + y))). (End)

Extensions

Name edited by Petros Hadjicostas, Jul 07 2020
Previous Showing 11-16 of 16 results.