cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A066042 Numbers k such that k divided by ((sum of digits of k) multiplied by (product of digits of k)) is prime.

Original entry on oeis.org

12, 111, 216, 432, 41112, 81216, 186624, 248832, 311472, 316224, 341712, 422144, 714112, 1131111, 1131732, 1191915, 1211328, 1292112, 1418112, 2192832, 3112128, 4331232, 11127424, 11311272, 18122112, 21111192, 26726112, 28422144, 34338816
Offset: 1

Views

Author

Enoch Haga, Dec 13 2001

Keywords

Examples

			a(2) = 111 because 1+1+1 = 3 and 1*1*1 = 1 and 3*1 = 3 and 111/3 = 37 and 37 is prime. [corrected by _Harry J. Smith_, Nov 08 2009]
		

Crossrefs

Programs

  • Mathematica
    ndspQ[n_]:=Module[{idn=IntegerDigits[n]},FreeQ[idn,0]&&PrimeQ[n/(Total[ idn]Times@@idn)]]; Select[Range[35*10^6],ndspQ] (* Harvey P. Dale, Feb 09 2015 *)
  • PARI
    isok(k) = { my(d=digits(k), q=vecsum(d)*vecprod(d)); q!= 0 && k%q==0 && isprime(k/q) }
    { for(k=0, 10^7, if(isok(k), print1(k, ", "))) } \\ Harry J. Smith, Nov 08 2009

Formula

Sum digits of n; take product of digits of n; multiply sum by product and divide into n. If prime, add to sequence.

Extensions

Checked to over 10^8 (110508539) without finding another example.
Offset 1 from Harry J. Smith, Nov 08 2009
Should have found 34338816, 37121112, and 41174112 < 10^8. Term a(29) from Harry J. Smith, Nov 08 2009

A066309 Numbers k such that k > (product of digits of k) * (sum of digits of k).

Original entry on oeis.org

10, 11, 12, 13, 20, 21, 22, 30, 31, 32, 40, 41, 50, 51, 60, 61, 70, 71, 80, 81, 90, 91, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 130, 131, 132, 133, 134, 140, 141, 142
Offset: 1

Views

Author

Labos Elemer and Klaus Brockhaus, Dec 13 2001

Keywords

Examples

			13 is in the sequence because (1*3)*(1+3) = 3*4 = 12 < 13.
125 is a term because (1*2*5)*(1+2+5) = 10*8 = 80 < 125.
		

Crossrefs

Programs

  • ARIBAS
    function a066312(a,b: integer); var n,k,j,p,d: integer; s: string; begin for n := a to b do s := itoa(n); k := 0; p := 1; for j := 0 to length(s) - 1 do d := atoi(s[j..j]); k := k + d; p := p*d; end; if n > p*k then write(n,","); end; end; end; a066312(0,150);
    
  • Mathematica
    asum[x_] := Apply[Plus, IntegerDigits[x]] apro[x_] := Apply[Times, IntegerDigits[x]] sz[x_] := asu[x]*apro[x] Do[s=sz[n]; If[Greater[n, s], Print[n]], {n, 1, 1000}]
    okQ[n_]:=Module[{idn=IntegerDigits[n]},n> Total[idn]Times@@idn];Select[Range[150],okQ]  (* Harvey P. Dale, Mar 12 2011 *)
  • PARI
    isok(k) = {my(d=digits(k)); k > vecprod(d) * vecsum(d)} \\ Harry J. Smith, Feb 10 2010

A256240 Numbers n such that repeatedly setting n := A066308(n) yields a constant nonzero n.

Original entry on oeis.org

1, 89, 98, 135, 139, 144, 153, 193, 233, 315, 319, 323, 332, 351, 391, 414, 441, 513, 531, 913, 931, 1224, 1242, 1367, 1376, 1422, 1637, 1673, 1736, 1763, 2124, 2142, 2214, 2241, 2412, 2421, 3167, 3176, 3617, 3671, 3716, 3761, 4122, 4212
Offset: 1

Views

Author

David A. Corneth, Mar 20 2015

Keywords

Comments

Eventually, these values of n become nonzero elements of A038369; 1, 135 or 144.

Examples

			89 is an element because (8 + 9) * 8 * 9 = 1224, then (1 + 2 + 2 + 4) * 1 * 2 * 2 * 4 = 144, then (1 + 4 + 4) * 1 * 4 * 4 = 144. Repetition so stop. 144 > 0 so 89 is an element.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[5000], FixedPoint[Total[#] Apply[Times, #] &@ IntegerDigits@ # &, #] > 0 &] (* Michael De Vlieger, Aug 16 2017 *)
  • PARI
    \\test if n is an element.
    is(n)=while(n!=SP(n),n=SP(n));n>0
    \\Sum of digits times product of digits of n (A066308(n))
    SP(n)={d=digits(n);prod(i=1,#d,d[i])*vecsum(d)}

A114457 Smallest k > 0 such that abs(S(k)P(k)-k) equals n, where S(k) is the sum and P(k) is the product of decimal digits of k or 0 if no such k exists.

Original entry on oeis.org

1, 13, 2, 219, 724, 1285, 3, 23, 7789816, 11, 10, 2891, 4, 127, 226, 15, 3248, 163, 52, 31, 5, 33, 262, 12857, 24, 325, 16, 243, 38428, 617, 6, 68177, 172, 0, 62, 2275, 272, 22577, 118, 17, 40, 43, 7, 1339, 136, 25, 154, 143, 128, 125599, 34, 5619, 352, 1483
Offset: 0

Views

Author

Eric W. Weisstein, Nov 28 2005

Keywords

Comments

a(33) > 2*10^9; then sequence continues 62, 2275, 272, 22577, 118, 17, 40, 43, 7, 1339, 136, 25, 154, 143, 128, 125599, 34, 5619, 352, 1483, 18, 145, 8, 15457, 173, 14963, 60, 1727, 517, 1197, 1787456, 235, 642, 53, 116, ... - Robert G. Wilson v, Dec 14 2005
a(33) > 2*10^16. - Floris M. Velleman, Dec 17 2014
a(33) = 0. Modification of David W. Wilson's proof for A038369 shows that if a(33) > 0, then a(33) has at most 84 digits. This allows an exhaustive search of numbers of the form 2^a*3^b*5^c*7^d which shows that no such number exists. Other values of n for which a(n) is currently unknown and may be equal to 0 (based on analysis of numbers with at most 20 digits) are: 69, 111, 127, 146, 168, 172, 233, 243, 249, 273, 279, 281, 316, 327, 372, 533, 557, 579, 587, 621, 623, 647, 649, 676, 683, 713, 721, 816, 819, 821, 827, 861, 872, 917, 926, 927, 928, 939, 983, 996, 999, ... - Chai Wah Wu, Nov 22 2015
a(69) = a(111) = 0. To compute a(111), numbers of at most 85 digits were checked. - Chai Wah Wu, Dec 04 2015

Crossrefs

Cf. A007953 (sum of digits), A007954 (product of digits), A038369.

Programs

  • Mathematica
    a[n_] := Block[{k = 1}, While[id = IntegerDigits@k; Abs[(Plus @@ id)(Times @@ id) - k] != n, k++ ]; k];
    Table[ a[n], {n, 0, 54}] (* Robert G. Wilson v, Dec 14 2005 *)
  • PARI
    f(k) = my(d=digits(k)); abs(sum(j=1, #d, d[j])*prod(j=1,#d, d[j]) - k);
    a(n) = {k = 1; while(f(k) != n, k++); k;} \\ Michel Marcus, Jan 02 2015

Extensions

Added a(33), edited definition and verified a(34)-a(68) by Chai Wah Wu, Nov 22 2015

A366832 Numbers k such that k = (product of nonzero digits) * (sum of digits) for the digits of k in base 9.

Original entry on oeis.org

1, 12, 1536, 172032, 430080, 4014080
Offset: 1

Views

Author

René-Louis Clerc, Jan 10 2024

Keywords

Comments

There is a finite number of such numbers (Property 1' of Clerc).

Examples

			430080 = 724856_9, (7+2+4+8+5+6)*(7*2*4*8*5*6) = 32*13440 = 430080.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[5*10^6],Total[IntegerDigits[#,9]]*Fold[Times,1,IntegerDigits[#,9]]==#&] (* James C. McMahon, Jan 30 2024 *)
  • PARI
    isok(k, b) = my(d=select(x->(x>0), digits(k,b))); vecprod(d)*vecsum(d) == k;
     for (k=1, 10^7, if (isok(k, 9), print1(k, ", ")))

A367070 Numbers k such that k = (product of nonzero digits) * (sum of digits) for the digits of k in base 7.

Original entry on oeis.org

1, 16, 128, 250, 480, 864, 21600, 62208, 73728
Offset: 1

Views

Author

René-Louis Clerc, Jan 10 2024

Keywords

Comments

There is a finite number of such numbers; we only calculated the terms in [1, 10^10] (Property 1' of Clerc).

Examples

			21600 = 116655_7, (1+1+6+6+5+5)*(1*1*6*6*5*5) = 24*900 = 21600.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[7^7], #1 == Times @@ DeleteCases[#2, 0]*Total[#2] & @@ {#, IntegerDigits[#, 7]} &] (* Michael De Vlieger, Mar 25 2024 *)
  • PARI
    isok(k, b) = my(d=select(x->(x>0), digits(k,b))); vecprod(d)*vecsum(d) == k;
    for (k=1, 10^5, if (isok(k, 7), print1(k, ", ")))

A114061 Numbers n such that n = (product of digits of n) * (sum of digits of n) in some base.

Original entry on oeis.org

0, 1, 6, 12, 16, 20, 30, 42, 48, 54, 56, 72, 90, 96, 110, 128, 132, 135, 144, 156, 160, 162, 176, 182, 210, 231, 240, 250, 272, 300, 306, 324, 336, 342, 380, 384, 420, 432, 448, 455, 462, 480, 495, 504, 506, 540, 552, 576, 600, 624, 650, 663, 686, 702, 720, 750
Offset: 1

Views

Author

Matthew Conroy, Feb 02 2006

Keywords

Comments

This sequence is infinite since b^2+b is in the sequence for all b>1: in base b, b^2+b has digits {1,b} and (1*b)*(1+b)=b^2+b.

Examples

			12 is in the sequence since in base 9, 12 has digits {1,3} and (1*3)*(1+3)=12.
		

Crossrefs

Cf. A038369.

A145745 Numbers n such that n = sigma(sum of digits of n)*sigma(product of digits of n).

Original entry on oeis.org

1, 12, 6266169, 6931848
Offset: 1

Views

Author

Farideh Firoozbakht, Oct 26 2008

Keywords

Comments

No further terms up to 10^26. - Chai Wah Wu, Nov 28 2015
No other terms below 10^100. The sequence is likely finite and complete. - Max Alekseyev, Sep 05 2023

Examples

			12 = 4*3 = sigma(1+2)*sigma(1*2).
6931848 = 56*123783 = sigma(6+9+3+1+8+4+8)*sigma(6*9*3*1*8*4*8).
		

Crossrefs

Cf. A038369.

Programs

  • Mathematica
    Do[h=IntegerDigits[n]; s=Apply[Plus,h];p=Apply[Times,h];If[n== DivisorSigma[1,s]*DivisorSigma[1,p],Print[n]],{n,2000000000}]

A370251 Base-12 numbers k such that k = (product of nonzero digits of k) * (sum of digits of k) (written in base 10).

Original entry on oeis.org

1, 176, 231, 495, 7040
Offset: 1

Views

Author

René-Louis Clerc, Feb 13 2024

Keywords

Comments

There are only finitely many such numbers (Property 1' of Clerc).

Examples

			231 = 173_12, (1*7*3)*(1+7+3) = 21*11 = 231.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[5*10^4], Total[IntegerDigits[#, 12]]*Fold[Times, 1, Select[IntegerDigits[#, 12],#>0&]]==#&] (* James C. McMahon, Feb 14 2024 *)
  • PARI
    isok(k, b) = my(d=select(x->(x>0), digits(k, b))); vecprod(d)*vecsum(d) == k;
    for (k=0, 10^10, if (isok(k, 12), print1(k, ", ")))
Previous Showing 11-19 of 19 results.