cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 73 results. Next

A261246 Positive integers D such that the generalized Pell equation X^2 - D Y^2 = 2 is soluble.

Original entry on oeis.org

2, 7, 14, 23, 31, 34, 46, 47, 62, 71, 79, 94, 98, 103, 119, 127, 142, 151, 158, 167, 191, 194, 199, 206, 223, 238, 239, 254, 263, 271, 287, 302, 311, 322, 334, 343, 359, 367, 382, 383, 386, 391, 398, 431, 439, 446, 463, 478, 479, 482, 487, 503, 511
Offset: 1

Views

Author

Wolfdieter Lang, Sep 06 2015

Keywords

Comments

For the fundamental positive solution x(n)^2 - a(n)*y(n)^2 = 2 see (x(n) = A261247(n), y(n) = A261248(n)), for n >= 1.
Conjecture: The sequence consists of all numbers D not a square and even D = 2*d has odd d with prime factors of the form 1 or 7 (mod 8). Odd D has prime factors of the form 1 or 7 (mod 8) but there is an odd number of primes of the form 7 (mod 8). The following will prove that these conditions for D are necessary in order to have solutions.
This conjecture is false. For the odd D case see the counterexamples in A263010, and for the even D in A264352. - Wolfdieter Lang, Nov 12 2015
If there is a solution for D, D not a square, then only one class of solution exists due to Nagell's Theorem 110, p. 208, because then 2 divides 2*D. All solutions will be proper because 2 is a prime.
For the even prime D = p = 2 the positive fundamental solution is [x(1) = 2, y(1) = 1].
For odd primes D = p there can be solutions only for p == +7 (mod 8), that is p from A007522. Then x and y are both odd. Proof: Consider a solution of x^2 - p*y^2 = 2. The parities of x and y have to be either even and even or odd and odd. For odd x one has x^2 == +1 (mod 8) (because x^2 = 8*T(X) + 1 with x = 2*X+1 and the triangular numbers T = A000217); similarly for y^2 if y is odd. In the even-even case x^2 and y^2 are both congruent to 4 (mod 8). The even-even case leads to 4 - 4*p = 2 (mod 8), excluding all odd p, namely p == 1, 3, 5, 7 (mod 8). The odd-odd case is 1 - p*1 = 2 (mod 8), and p == 1, 3, 5 (mod 8) are excluded. Therefore, only p == 7 (mod 8) qualifies for a solution, and then x and y will be both odd.
For D = p == 7 (mod 8) from A007522 one can test if there exists a fundamental positive solution (at most one class can exist, therefore there is either no solution or just one) [2*U(p)+1, 2*V(p)+1] by checking the two inequalities (see Nagell, eq. (4) and (5), p. 206) 0 <= V(p) < floor((Y(p)/sqrt(X(p) + 1) - 1)/2) and 0 <= U(p) <= floor((sqrt(X(p) + 1) - 1)/2), with the positive fundamental solution [X(p), Y(p)] of X^2 - p*Y^2 = +1. These solutions can be found in (A033313(k), A033317(k)) if A000037(k) is the prime p == 7 (mod 8) one is testing.
For composite even D there are solutions only if D/2 is odd. Proof: If D is even then x has to be even, hence x^2 == 0 (mod 4) and then D*y^2 == -2 (mod 4), hence D cannot be 0 (mod 4). Thus an even D can only be of the form D = 2*d with d odd. The modulo 3 and modulo 5 argument used in the next case will show that d can have only prime factors of the form +1 or -1 (mod 8).
For composite odd D one finds like above that the even-even x and y case is excluded, and the odd-odd case needs D == -1 (mod 8) == 7 (mod 8). Hence a candidate for D is from A004771 - A007522. D cannot have any prime factor p of the form 3 or 5 (mod 8) because otherwise x^2 == 2 (mod p), but the Legendre symbol (2/p) = -1 for such p's (see, e.g., Nagell, Theorem 81, p. 136). For example, D = 15 = 3*5 cannot have a solution. Thus the only candidates for D have prime factors p of the form +1 or +7 (mod 8), with the number of the latter ones being odd. E.g., D = 7*17 = 119 qualifies as a candidate and it has indeed solutions, namely the ones obtainable from the fundamental one [11, 1].
The general proper positive solutions for D(n) = a(n) are obtained from the fundamental ones [x(n), y(n)] given in A261247 and A261248 with the help of powers of the matrix M(n) = [[u(n), D(n)*v(n)], [v(n), u(n)]], where u(n) and v(n) are the positive fundamental solutions of U(n) - D(n)*V(n) = 1, by (x(n; k), y(n; k))^T = M(n)^k (x(n), y(n))^T (T for transposed), for k >= 0. [u(n), v(n)] = [A033313(j(n)), A033317(j(n))] if A000037(j(n)) = D(n) = a(n).
Observation: All degrees (7, 47, 79, 103, 119, 127) of the modular equations derived for solving Ramanujan's question 699 by Galkin & Kozirev (see reference and A318732) are terms of this sequence. - Hugo Pfoertner, Sep 24 2023

Examples

			The first fundamental solutions [x(n), y(n)] are (the first entry gives D(n)=a(n)):
[2, [2, 1]], [7, [3, 1]], [14, [4, 1]],
[23, [5, 1]], [31, [39, 7]], [34, [6, 1]],
[46, [156, 23]], [47, [7, 1]], [62, [8, 1]],
[71, [59, 7]], [79, [9, 1]], [94, [1464, 151]],
[98, [10, 1]], [103, [477, 47]], [119, [11, 1]],
[127, [2175, 193]], [142, [12, 1]],
[151, [41571, 3383]], [158, [88, 7]],
[167, [13, 1]], [191, [2999, 217]],
[194, [14, 1]], [199, [127539, 9041]],
[206, [244, 17]], [223, [15, 1]], [238, [108, 7]],
[239, [2489, 161]], ...
		

References

  • J. W. S. Cassels, Rational Quadratic Forms, Cambridge, 1978; see Chap. 3.
  • V. M. Galkin, O. R. Kozyrev, On an algebraic problem of Ramanujan, pp. 89-94 in Number Theoretic And Algebraic Methods In Computer Science - Proceedings Of The International Conference, Moscow 1993, Ed. Horst G. Zimmer, World Scientific, 31 Aug 1995
  • T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964.

Crossrefs

See also A038873 (2 and primes == +-1 mod 8), A001132.

Programs

  • Mathematica
    Select[Range[600], False =!= Reduce[x^2 - # y^2 == 2, {x, y}, Integers] &] (* Giovanni Resta, Aug 12 2017 *)

A141373 Primes of the form 3*x^2+16*y^2. Also primes of the form 4*x^2+4*x*y-5*y^2 (as well as primes the form 4*x^2+12*x*y+3*y^2).

Original entry on oeis.org

3, 19, 43, 67, 139, 163, 211, 283, 307, 331, 379, 499, 523, 547, 571, 619, 643, 691, 739, 787, 811, 859, 883, 907, 1051, 1123, 1171, 1291, 1459, 1483, 1531, 1579, 1627, 1699, 1723, 1747, 1867, 1987, 2011, 2083, 2131, 2179, 2203, 2251, 2347, 2371, 2467, 2539
Offset: 1

Views

Author

T. D. Noe, May 13 2005; Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 28 2008

Keywords

Comments

The discriminant is -192 (or 96, or ...), depending on which quadratic form is used for the definition. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d=b^2-4ac and gcd(a,b,c)=1. See A107132 for more information.
Except for 3, also primes of the forms 4x^2 + 4xy + 19y^2 and 16x^2 + 8xy + 19y^2. See A140633. - T. D. Noe, May 19 2008

Examples

			19 is a member because we can write 19=4*2^2+4*2*1-5*1^2 (or 19=4*1^2+12*1*1+3*1^2).
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

See also A038872 (d=5),
A038873 (d=8),
A068228, A141123 (d=12),
A038883 (d=13),
A038889 (d=17),
A141158 (d=20),
A141159, A141160 (d=21),
A141170, A141171 (d=24),
A141172, A141173 (d=28),
A141174, A141175 (d=32),
A141176, A141177 (d=33),
A141178 (d=37),
A141179, A141180 (d=40),
A141181 (d=41),
A141182, A141183 (d=44),
A033212, A141785 (d=45),
A068228, A141187 (d=48),
A141188 (d=52),
A141189 (d=53),
A141190, A141191 (d=56),
A141192, A141193 (d=57),
A141215 (d=61),
A141111, A141112 (d=65),
A141336, A141337 (d=92),
A141338, A141339 (d=93),
A141161, A141163 (d=148),
A141165, A141166 (d=229),

Programs

  • Magma
    [3] cat [ p: p in PrimesUpTo(3000) | p mod 24 in {19 } ]; // Vincenzo Librandi, Jul 24 2012
    
  • Mathematica
    QuadPrimes2[3, 0, 16, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\3), w=3*x^2; for(y=0, sqrtint((lim-w)\16), if(isprime(t=w+16*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 09 2017

Formula

Except for 3, the primes are congruent to 19 (mod 24). - T. D. Noe, May 02 2008

Extensions

More terms from Colin Barker, Apr 05 2015
Edited by N. J. A. Sloane, Jul 14 2019, combining two identical entries both with multiple cross-references.

A141161 Primes of the form 4*x^2+6*x*y-7*y^2.

Original entry on oeis.org

3, 7, 11, 41, 47, 53, 71, 73, 83, 101, 127, 149, 157, 173, 181, 197, 211, 223, 229, 263, 271, 307, 337, 359, 373, 379, 397, 419, 433, 443, 509, 521, 571, 593, 599, 613, 617, 619, 641, 659, 673, 677, 719, 733, 739, 743, 751, 761, 773, 787, 811, 821, 887, 937
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (sergarmor(AT)yahoo.es), Jun 13 2008

Keywords

Comments

Discriminant = 148. Class = 3. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d=b^2-4ac and gcd(a,b,c)=1.
Also primes represented by the improperly equivalent form 7*x^2 + 6*x*y - 4*y^2

Examples

			a(8)=73 because we can write 73= 4*4^2+6*4*3-7*3^2.
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

Cf. A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141111, A141112 (d=65). A141163 (d=148).
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    q := 4*x^2 + 6*x*y - 7*y^2; pmax = 1000; xmax = 100; ymin = -xmax; ymax = xmax; k = 1; prms0 = {}; prms = {2}; While[prms != prms0, xx = yy = {}; prms0 = prms; prms = Reap[Do[p = q; If[2 <= p <= pmax && PrimeQ[p], AppendTo[xx, x]; AppendTo[yy, y]; Sow[p]], {x, 1, k*xmax}, {y, k*ymin, k*ymax}]][[2, 1]] // Union; xmax = Max[xx]; ymin = Min[yy]; ymax = Max[yy]; k++; Print["k = ", k, " xmax = ", xmax, " ymin = ", ymin, " ymax = ", ymax ]]; A141161 = prms (* Jean-François Alcover, Oct 26 2016 *)
  • Sage
    # The function binaryQF is defined in the link 'Binary Quadratic Forms'.
    Q = binaryQF([4, 6, -7])
    Q.represented_positives(937, 'prime')  # Peter Luschny, Oct 26 2016

A141165 Primes of the form 9*x^2+7*x*y-5*y^2.

Original entry on oeis.org

3, 5, 11, 17, 19, 43, 61, 71, 83, 97, 103, 149, 151, 167, 181, 233, 271, 277, 293, 307, 311, 337, 367, 373, 397, 401, 409, 421, 431, 433, 457, 463, 467, 491, 557, 569, 587, 631, 641, 661, 673, 683, 701, 733, 743, 751, 757, 769, 787, 821, 859, 863, 883, 911
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (sergarmor(AT)yahoo.es), Jun 12 2008

Keywords

Comments

Discriminant = 229. Class = 3. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d=b^2-4ac. They can represent primes only if gcd(a,b,c)=1. [Edited by M. F. Hasler, Jan 27 2016]
Also primes represented by the improperly equivalent form 5*x^2+7*x*y-9*y^2. - Juan Arias-de-Reyna, Mar 17 2011
36*a(n) has the form z^2 - 229*y^2, where z = 18*x+7*y. [Bruno Berselli, Jun 25 2014]
Appears to be the complement of A141166 in A268155, primes that are squares mod 229. - M. F. Hasler, Jan 27 2016

Examples

			a(10)=97 because we can write 97= 9*3^2+7*3*1-5*1^2
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory
  • D. B. Zagier, Zetafunktionen und quadratische Körper

Crossrefs

Cf. A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141111, A141112 (d=65). A141166 (d=229).
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    q := 9*x^2 + 7*x*y - 5*y^2; pmax = 1000; xmax = xmax0 = 50; ymin = ymin0 = -50; ymax = ymax0 = 50; k = 1.3 (expansion coeff. for maxima *); prms0 = {}; prms = {2}; While[prms != prms0, xx = yy = {}; prms0 = prms; prms = Reap[Do[p = q; If[2 <= p <= pmax && PrimeQ[p], AppendTo[xx, x]; AppendTo[yy, y]; Sow[p]], {x, 1, If[xmax == xmax0, xmax, Floor[k*xmax]]}, {y, If[ymin == ymin0, ymin, Floor[k*ymin]], If[ymax == ymax0, ymax, Floor[k*ymax]]}]][[2, 1]] // Union; xmax = Max[xx]; ymin = Min[yy]; ymax = Max[yy]; Print[Length[prms], " terms", "  xmax = ", xmax, "  ymin = ", ymin, "  ymax = ", ymax ]]; A141165 = prms (* Jean-François Alcover, Oct 26 2016 *)
  • PARI
    is_A141165(p)=qfbsolve(Qfb(9,7,-5),p) \\ Returns nonzero (actually, a solution [x,y]) iff p is a member of the sequence. For efficiency it is assumed that p is prime. - M. F. Hasler, Jan 27 2016
    
  • Sage
    # uses[binaryQF]
    # The function binaryQF is defined in the link 'Binary Quadratic Forms'.
    Q = binaryQF([9, 7, -5])
    print(Q.represented_positives(911, 'prime')) # Peter Luschny, Oct 26 2016

A141166 Primes of the form x^2+15*x*y-y^2.

Original entry on oeis.org

37, 53, 173, 193, 229, 241, 347, 359, 383, 439, 443, 449, 461, 503, 509, 541, 593, 607, 617, 619, 643, 691, 907, 967, 977, 1019, 1051, 1063, 1097, 1109, 1249, 1277, 1291, 1303, 1321, 1399, 1429, 1583, 1667, 1741, 1783, 1993, 1997, 2003, 2087, 2137, 2143, 2333, 2347, 2351
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (sergarmor(AT)yahoo.es), Jun 12 2008

Keywords

Comments

Discriminant = 229. Class = 3. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d = b^2-4ac. They can represent primes only if gcd(a,b,c)=1. [Edited by M. F. Hasler, Jan 27 2016]
Appears to be the complement of A141165 in A268155, primes that are squares mod 229. - M. F. Hasler, Jan 27 2016

Examples

			a(2)=53 because we can write 53= 3^2+15*3*1-1^2
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory

Crossrefs

Cf. A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141111, A141112 (d=65). A141165 (d=229).
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    lim = 100; Rest@ Union@ Abs@ Flatten@ Table[x^2 + 15 x y - y^2, {x, lim}, {y, lim}] /. n_ /; CompositeQ@ n -> Nothing (* Michael De Vlieger, Jan 27 2016 *)
  • PARI
    is_A141166(p)=qfbsolve(Qfb(1,15,-1),p) \\ Returns nonzero (actually, a solution [x,y]) iff p is a member of the sequence. For efficiency it is assumed that p is prime. Example usage: select(is_A141166,primes(500)) - M. F. Hasler, Jan 27 2016

A141171 Primes of the form -x^2+4*x*y+2*y^2 (as well as of the form 5*x^2+8*x*y+2*y^2).

Original entry on oeis.org

2, 5, 23, 29, 47, 53, 71, 101, 149, 167, 173, 191, 197, 239, 263, 269, 293, 311, 317, 359, 383, 389, 431, 461, 479, 503, 509, 557, 599, 647, 653, 677, 701, 719, 743, 773, 797, 821, 839, 863, 887, 911, 941, 983, 1013, 1031, 1061, 1103, 1109, 1151, 1181, 1223, 1229, 1277, 1301, 1319, 1367
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 12 2008

Keywords

Comments

Discriminant is 24. Class is 2. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2 - 4ac and gcd(a, b, c) = 1.
Also primes of form 6*u^2 - v^2. The transformation {u, v} = {y, x - 2*y} yields the form in the title. - Juan Arias-de-Reyna, Mar 19 2011
Members of A141171 but not of A105880: 2, 431, 911, 1013, 1181, ..., . - Robert G. Wilson v, Aug 30 2013
This is also the list of primes p such that p = 2 or p is congruent to 5 or 23 mod 24 - Jean-François Alcover, Oct 28 2016

Examples

			a(4) = 29 because we can write 29 = -1^2 + 4*1*3 + 2*3^2 (or 29 = 5*1^2 + 8*1*2 + 2*2^2).
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.
  • D. B. Zagier, Zetafunktionen und quadratische Körper.

Crossrefs

Cf. A141170 (d = 24), A105880 (Primes for which -8 is a primitive root.) A038872 (d = 5). A038873 (d = 8). A068228, A141123 (d = 12). A038883 (d = 13). A038889 (d = 17). A141111, A141112 (d = 65).
Cf. also A242665.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Maple
    N:= 10^5: # to get all terms <= N
    select(t -> isprime(t) and [isolve(6*u^2-v^2=t)]<>[], [2, seq(op([24*i+5,24*i+23]),i=0..floor((N-5)/24))]); # Robert Israel, Sep 28 2014
  • Mathematica
    A141171 = {}; Do[p = -x^2 + 4 * x * y + 2 * y^2; If[p > 0 && PrimeQ@ p, AppendTo[A141171, p]], {x, 25}, {y, 25}]; Take[ Union@ A141171, 57] (* Robert G. Wilson v, Aug 30 2013 *)
    Select[Prime[Range[250]], # == 2 || MatchQ[Mod[#, 24], 5|23]&] (* Jean-François Alcover, Oct 28 2016 *)

A141183 Primes of the form -x^2+6*x*y+2*y^2 (as well as of the form 7*x^2+10*x*y+2*y^2).

Original entry on oeis.org

2, 7, 11, 19, 43, 79, 83, 107, 127, 131, 139, 151, 167, 211, 227, 239, 263, 271, 283, 307, 347, 359, 431, 439, 479, 491, 503, 523, 547, 563, 571, 607, 659, 739, 743, 787, 811, 827, 887, 919, 967, 1019, 1031, 1051, 1063, 1091, 1151, 1163, 1187, 1223, 1231, 1283, 1319, 1327
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (sergarmor(AT)yahoo.es), Jun 13 2008

Keywords

Comments

Discriminant = 44. Class = 2. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d=b^2-4ac and gcd(a,b,c)=1.
Also primes of form 11*u^2-v^2. The transformation {u,v}={-3*x-y,10*x+3*y} yields the form in the title. - Juan Arias-de-Reyna, Mar 20 2011
Also primes p equal -1 mod 4 and = 1, 3, 4, 5, or 9 mod 11. - Juan Arias-de-Reyna, Mar 20 2011

Examples

			a(4)=19 because we can write 19= -1^2+6*1*2+2*2^2 (or 19=7*1^2+10*1*1+2*1^2).
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory, Academic Press, NY, 1966.

Crossrefs

Cf. A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141111, A141112 (d=65). A141182 (d=44).
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    Select[Prime[Range[250]], # == 2 || # == 11 || MatchQ[Mod[#, 44], Alternatives[7, 19, 35, 39, 43]]&] (* Jean-François Alcover, Oct 28 2016 *)

A141187 Primes of the form -x^2+6*x*y+3*y^2 (as well as of the form 8*x^2+12*x*y+3*y^2).

Original entry on oeis.org

3, 11, 23, 47, 59, 71, 83, 107, 131, 167, 179, 191, 227, 239, 251, 263, 311, 347, 359, 383, 419, 431, 443, 467, 479, 491, 503, 563, 587, 599, 647, 659, 683, 719, 743, 827, 839, 863, 887, 911, 947, 971, 983, 1019, 1031, 1091, 1103, 1151, 1163, 1187, 1223
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (sergarmor(AT)yahoo.es), Jun 12 2008

Keywords

Comments

Discriminant = 48. Class = 2. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d=b^2-4ac and gcd(a,b,c)=1.
Values of the quadratic form are {0,3,8,11} mod 12, so all values with the exception of 3 are also in A068231. - R. J. Mathar, Jul 30 2008
Is this the same sequence (apart from the initial 3) as A068231? [Yes, since the orders of imaginary quadratic fields with discriminant 48 has 1 class per genus (can be verified by the quadclassunit() function in PARI), so the primes represented by a binary quadratic form of this discriminant are determined by a congruence condition. - Jianing Song, Jun 22 2025]

Examples

			a(3)=23 because we can write 23= -1^2+6*1*2+3*2^2 (or 23=8*1^2+12*1*1+3*1^2).
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966.
  • D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.

Crossrefs

Cf. A038872 (d=5), A038873 (d=8), A068228 (d=12, 48, or -36), A038883 (d=13), A038889 (d=17), A141111 and A141112 (d=65).
Essentially the same as A068231 and A141123.
Cf. A243169.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    Reap[For[p = 2, p < 2000, p = NextPrime[p], If[FindInstance[p == -x^2 + 6*x*y + 3*y^2, {x, y}, Integers, 1] =!= {}, Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Oct 25 2016 *)

Extensions

More terms from Colin Barker, Apr 05 2015

A141163 Primes of the form x^2+12*x*y-y^2.

Original entry on oeis.org

37, 67, 107, 137, 139, 151, 233, 269, 293, 317, 349, 367, 491, 601, 691, 823, 839, 863, 877, 881, 929, 941, 971, 1061, 1069, 1103, 1163, 1237, 1259, 1279, 1283, 1307, 1373, 1433, 1489, 1553, 1601, 1607, 1627, 1669, 1693, 1777, 1783, 1787, 1847, 1877, 1973
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (sergarmor(AT)yahoo.es), Jun 13 2008

Keywords

Comments

Discriminant = 148. Class = 3. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d=b^2-4ac and gcd(a,b,c)=1.

Examples

			a(4)=137 because we can write 137= 3^2+12*3*4-4^2.
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

Cf. A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141111, A141112 (d=65). A141161 (d=148).
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    q := x^2 + 12*x*y - y^2; pmax = 2000; xmax = 100; ymin = -xmax; ymax = xmax; k = 1; prms0 = {}; prms = {2}; While[prms != prms0, xx = yy = {}; prms0 = prms; prms = Reap[Do[p = q; If[2 <= p <= pmax && PrimeQ[p], AppendTo[xx, x]; AppendTo[yy, y]; Sow[p]], {x, 1, k*xmax}, {y, k *ymin, k *ymax}]][[2, 1]] // Union; xmax = Max[xx]; ymin = Min[yy]; ymax = Max[yy]; k++; Print["k = ", k, " xmax = ", xmax, " ymin = ", ymin, " ymax = ", ymax ]]; A141163 = prms (* Jean-François Alcover, Oct 26 2016 *)
  • Sage
    # The function binaryQF is defined in the link 'Binary Quadratic Forms'.
    Q = binaryQF([1, 12, -1])
    print(Q.represented_positives(1973, 'prime')) # Peter Luschny, Oct 26 2016

A141167 Primes of the form 8*x^2+x*y-8*y^2.

Original entry on oeis.org

61, 67, 113, 157, 193, 197, 227, 241, 257, 419, 499, 587, 631, 643, 653, 739, 821, 823, 859, 863, 907, 929, 947, 971, 997, 1019, 1039, 1051, 1087, 1181, 1187, 1217, 1289, 1303, 1319, 1373, 1511, 1531, 1637, 1777, 1783, 1801, 1913, 1997, 2027, 2039, 2069, 2087, 2129, 2213
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (sergarmor(AT)yahoo.es), Jun 12 2008

Keywords

Comments

Discriminant = 257. Class = 3. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d=b^2-4ac and gcd(a,b,c)=1.

Examples

			a(6)=197 because we can write 197 = 8*5^2+5*1-8*1^2.
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory

Crossrefs

Numbers of the form 8x^2+xy-8y^2 in A243180.
Cf. A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141111, A141112 (d=65). A141168 (d=257).
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    q := 8*x^2 + x*y - 8*y^2; pmax = 3000; xmax = xmax0 = 50; ymin = ymin0 = -50; ymax = ymax0 = 50; k = 1.3 (* expansion coeff. for maxima *) ; dx = dy = 2; prms0 = {}; prms = {2}; While[prms != prms0, xx = yy = {}; prms0 = prms; prms = Reap[Do[p = q; If[2 <= p <= pmax && PrimeQ[p], AppendTo[xx, x]; AppendTo[yy, y]; Sow[p]], {x, 1, If[xmax == xmax0, xmax, Floor[k*xmax]], dx}, {y, If[ymin == ymin0, ymin, Floor[k*ymin]], If[ymax == ymax0, ymax, Floor[k*ymax]]}, dy]][[2, 1]] // Union; xmax = Max[xx]; ymin = Min[yy]; ymax = Max[yy]; Print[Length[prms], " terms", "  xmax = ", xmax, "  ymin = ", ymin, "  ymax = ", ymax ]]; A141167 = prms (* Jean-François Alcover, Oct 26 2016 *)
  • Sage
    # The function binaryQF is defined in the link 'Binary Quadratic Forms'.
    Q = binaryQF([8, 1, -8])
    print(Q.represented_positives(2213, 'prime')) # Peter Luschny, Oct 26 2016
Previous Showing 31-40 of 73 results. Next