cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-35 of 35 results.

A153274 Triangle, read by rows, T(n,k) = k^(n+1) * Pochhammer(1/k, n+1).

Original entry on oeis.org

2, 6, 15, 24, 105, 280, 120, 945, 3640, 9945, 720, 10395, 58240, 208845, 576576, 5040, 135135, 1106560, 5221125, 17873856, 49579075, 40320, 2027025, 24344320, 151412625, 643458816, 2131900225, 5925744000, 362880, 34459425, 608608000, 4996616625, 26381811456, 104463111025, 337767408000, 939536222625
Offset: 1

Views

Author

Roger L. Bagula, Dec 22 2008

Keywords

Comments

A Pochhammer function-based triangular sequence.
Row sums are: {2, 21, 409, 14650, 854776, 73920791, 8878927331, 1413788600036, 288152651134776, 73152069870215127, ...}.

Examples

			Triangle begins as:
      2;
      6,      15;
     24,     105,      280;
    120,     945,     3640,      9945;
    720,   10395,    58240,    208845,    576576;
   5040,  135135,  1106560,   5221125,  17873856,   49579075;
  40320, 2027025, 24344320, 151412625, 643458816, 2131900225, 5925744000;
		

Crossrefs

Programs

  • GAP
    Flat(List([1..12], n-> List([1..n], k-> Product([0..n], j-> j*k+1 )))); # G. C. Greubel, Mar 05 2020
  • Magma
    [(&*[j*k+1: j in [0..n]]): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 05 2020
    
  • Maple
    seq(seq( k^(n+1)*pochhammer(1/k, n+1), k=1..n), n=1..12); # G. C. Greubel, Mar 05 2020
  • Mathematica
    Table[Apply[Plus, CoefficientList[j*k^n*Pochhammer[(j+k)/k, n], j]], {n, 12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 05 2020 *)
    Table[k^(n+1)*Pochhammer[1/k, n+1], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Mar 05 2020 *)
  • PARI
    T(n, k) = prod(j=0, n, j*k+1);
    for(n=1, 12, for(k=1, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Mar 05 2020
    
  • Sage
    [[k^(n+1)*rising_factorial(1/k,n+1) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Mar 05 2020
    

Formula

T(n, k) = k^(n+1) * Pochmammer(1/k, n+1).
T(n, k) = Product_{j=0..n} (j*k + 1). - G. C. Greubel, Mar 05 2020

Extensions

Edited by G. C. Greubel, Mar 05 2020

A113148 Row 7 of table A113143; equal to INVERT of 7-fold factorials shifted one place right.

Original entry on oeis.org

1, 1, 2, 11, 141, 2928, 82597, 2925973, 124502114, 6179425823, 350316271761, 22326710345256, 1579953165170881, 122905129550802985, 10423661531476766834, 957176457621821573987, 94608465923392572536421
Offset: 0

Views

Author

Keywords

Examples

			A(x) = 1 + x + 2*x^2 + 11*x^3 + 141*x^4 + 2928*x^5 +...
= 1/(1 - x - x^2 - 8*x^3 - 120*x^4 -...- A045754(n)*x^(n+1)
-...).
		

Crossrefs

Cf. A113143, A045754 (7-fold factorials).

Programs

  • PARI
    {a(n)=local(x=X+X*O(X^n)); A=1/(1-x-x^2*sum(j=0,n,x^j*prod(i=0,j,7*i+1)));return(polcoeff(A,n,X))}

Formula

a(n) = Sum_{j=0..k} 7^(k-j)*A111146(k, j).
a(0) = 1; a(n+1) = Sum_{k=0..n} a(k)*A045754(n-k).

A153189 Triangle T(n,k) = Product_{j=0..k} n*j+1.

Original entry on oeis.org

1, 1, 2, 1, 3, 15, 1, 4, 28, 280, 1, 5, 45, 585, 9945, 1, 6, 66, 1056, 22176, 576576, 1, 7, 91, 1729, 43225, 1339975, 49579075, 1, 8, 120, 2640, 76560, 2756160, 118514880, 5925744000, 1, 9, 153, 3825, 126225, 5175225, 253586025, 14454403425, 939536222625
Offset: 0

Views

Author

Roger L. Bagula, Dec 20 2008

Keywords

Comments

Row sums are: {1, 3, 19, 313, 10581, 599881, 50964103, 6047094369, 954249517513, 193146844030201, 48762935887310811,...}. [Corrected by M. F. Hasler, Oct 28 2014]
This is the lower left triangle of the array A142589. - M. F. Hasler, Oct 28 2014
Row n is a subset of the n-fold factorial sequence for k=0..n. For example, T(8,0..8) is A045755(1..9). These sequences are listed for n=0..10 in A256268. - Georg Fischer, Feb 15 2020

Examples

			Triangle begins as:
  1;
  1, 2;
  1, 3,  15;
  1, 4,  28,  280;
  1, 5,  45,  585,   9945;
  1, 6,  66, 1056,  22176,  576576;
  1, 7,  91, 1729,  43225, 1339975,  49579075;
  1, 8, 120, 2640,  76560, 2756160, 118514880,  5925744000;
  1, 9, 153, 3825, 126225, 5175225, 253586025, 14454403425, 939536222625;
		

Crossrefs

Cf. A000142 (row 2), A001147 (3), A007559 (4), A007696 (5), A008548 (6), A008542 (7), A045754 (8), A045755 (9), A045756 (10), A144773 (11), A256268 (combined table).

Programs

  • Magma
    [(&*[n*j+1: j in [0..k]]): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 15 2020
    
  • Maple
    seq(seq(mul(n*j+1, j=0..k), k=0..n), n=0..10); # G. C. Greubel, Feb 15 2020
  • Mathematica
    T[n_, k_]= If[n==0 && k==0, 1, Product[n*j+1, {j,0,k}]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 15 2020 *)
    T[n_, k_]:= T[n, k]= If[k<2, 1+k*n, ((1+n*k)*T[n, k-1] + (1+n*k)*(1+n*(k-1))* T[n, k-2])/2]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* Georg Fischer, Feb 17 2020 *)
  • PARI
    T(n,k)=prod(j=0,k,n*j+1) \\ M. F. Hasler, Oct 28 2014
    
  • Sage
    [[ product(n*j+1 for j in (0..k)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Feb 15 2020

Formula

T(n, k) = n^(k+1)*Pochhammer(1/n, k+1).
From Vaclav Kotesovec, Oct 10 2016: (Start)
For fixed n > 0:
T(n, k) ~ sqrt(2*Pi) * n^k * k^(k + 1/2 + 1/n) / (Gamma(1 + 1/n) * exp(k)).
T(n, k) ~ k! * n^k * k^(1/n) / Gamma(1 + 1/n).
(End)
T(n, k) = Sum_{j=0..k+1} (-1)^(k-j+1)*Stirling1(k+1,j)*n^(k-j+1). - G. C. Greubel, Feb 17 2020
T(n, k) = ((1+n*k)*T(n, k-1) + (1+n*k)*(1+n*(k-1))*T(n, k-2))/2. - Georg Fischer, Feb 17 2020

Extensions

Edited and row 0 added by M. F. Hasler, Oct 28 2014

A020034 Nearest integer to Gamma(n + 1/7)/Gamma(1/7).

Original entry on oeis.org

1, 0, 0, 0, 1, 5, 23, 144, 1028, 8370, 76527, 776207, 8649165, 105025576, 1380336142, 19521896861, 295617295326, 4772107767405, 81807561726950, 1484222905617529, 28412267050392705, 572304236300767347
Offset: 0

Views

Author

Keywords

Comments

Gamma(n + 1/7)/Gamma(1/7) = 1, 1/7, 8/49, 120/343, 2640/2401, 76560/16807, 2756160/117649, 118514880/823543, ... - R. J. Mathar, Sep 04 2016

Crossrefs

Programs

  • Maple
    Digits := 64:f := proc(n,x) round(GAMMA(n+x)/GAMMA(x)); end;

A368119 Array read by ascending antidiagonals. A(n, k) = Product_{j=0..k-1} (n*j + 1).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 6, 1, 1, 1, 4, 15, 24, 1, 1, 1, 5, 28, 105, 120, 1, 1, 1, 6, 45, 280, 945, 720, 1, 1, 1, 7, 66, 585, 3640, 10395, 5040, 1, 1, 1, 8, 91, 1056, 9945, 58240, 135135, 40320, 1, 1, 1, 9, 120, 1729, 22176, 208845, 1106560, 2027025, 362880, 1
Offset: 0

Views

Author

Peter Luschny, Dec 18 2023

Keywords

Comments

A(n, k) is the number of increasing (n + 1)-ary trees on k vertices. (Following a comment of David Callan in A007559.)

Examples

			Array A(n, k) starts:
  [0] 1, 1, 1,   1,    1,      1,       1,         1, ...  A000012
  [1] 1, 1, 2,   6,   24,    120,     720,      5040, ...  A000142
  [2] 1, 1, 3,  15,  105,    945,   10395,    135135, ...  A001147
  [3] 1, 1, 4,  28,  280,   3640,   58240,   1106560, ...  A007559
  [4] 1, 1, 5,  45,  585,   9945,  208845,   5221125, ...  A007696
  [5] 1, 1, 6,  66, 1056,  22176,  576576,  17873856, ...  A008548
  [6] 1, 1, 7,  91, 1729,  43225, 1339975,  49579075, ...  A008542
  [7] 1, 1, 8, 120, 2640,  76560, 2756160, 118514880, ...  A045754
  [8] 1, 1, 9, 153, 3825, 126225, 5175225, 253586025, ...  A045755
		

Crossrefs

Programs

  • SageMath
    def A(n, k): return n**k * rising_factorial(1/n, k) if n > 0 else 1
    for n in range(9): print([A(n, k) for k in range(8)])

Formula

Let rf(n, k) denote the rising factorial and ff(n,k) the falling factorial.
A(n, k) = n^k * rf(1/n, k) if n > 0 else 1.
A(n, k) = (-n)^k * ff(-1/n, k) if n > 0 else 1.
A(n, k) = (n^k * Gamma(k + 1/n)) / Gamma(1/n) for n > 0.
A(n, k) = ((-n)^k * Gamma(1 - 1/n)) / Gamma(1 - 1/n - k) for n > 0.
A(n, k) = k! * [x^k](1 - n*x)^(-1/n).
A(n, k) = [x^k] hypergeom([1, 1/n], [], n*x).
Column n + 1 has a linear recurrence with constant coefficients and signature ((-1)^k*binomial(n+1, n-k) for k=0..n).
Previous Showing 31-35 of 35 results.