A153274
Triangle, read by rows, T(n,k) = k^(n+1) * Pochhammer(1/k, n+1).
Original entry on oeis.org
2, 6, 15, 24, 105, 280, 120, 945, 3640, 9945, 720, 10395, 58240, 208845, 576576, 5040, 135135, 1106560, 5221125, 17873856, 49579075, 40320, 2027025, 24344320, 151412625, 643458816, 2131900225, 5925744000, 362880, 34459425, 608608000, 4996616625, 26381811456, 104463111025, 337767408000, 939536222625
Offset: 1
Triangle begins as:
2;
6, 15;
24, 105, 280;
120, 945, 3640, 9945;
720, 10395, 58240, 208845, 576576;
5040, 135135, 1106560, 5221125, 17873856, 49579075;
40320, 2027025, 24344320, 151412625, 643458816, 2131900225, 5925744000;
-
Flat(List([1..12], n-> List([1..n], k-> Product([0..n], j-> j*k+1 )))); # G. C. Greubel, Mar 05 2020
-
[(&*[j*k+1: j in [0..n]]): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 05 2020
-
seq(seq( k^(n+1)*pochhammer(1/k, n+1), k=1..n), n=1..12); # G. C. Greubel, Mar 05 2020
-
Table[Apply[Plus, CoefficientList[j*k^n*Pochhammer[(j+k)/k, n], j]], {n, 12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 05 2020 *)
Table[k^(n+1)*Pochhammer[1/k, n+1], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Mar 05 2020 *)
-
T(n, k) = prod(j=0, n, j*k+1);
for(n=1, 12, for(k=1, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Mar 05 2020
-
[[k^(n+1)*rising_factorial(1/k,n+1) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Mar 05 2020
A113148
Row 7 of table A113143; equal to INVERT of 7-fold factorials shifted one place right.
Original entry on oeis.org
1, 1, 2, 11, 141, 2928, 82597, 2925973, 124502114, 6179425823, 350316271761, 22326710345256, 1579953165170881, 122905129550802985, 10423661531476766834, 957176457621821573987, 94608465923392572536421
Offset: 0
A(x) = 1 + x + 2*x^2 + 11*x^3 + 141*x^4 + 2928*x^5 +...
= 1/(1 - x - x^2 - 8*x^3 - 120*x^4 -...- A045754(n)*x^(n+1)
-...).
-
{a(n)=local(x=X+X*O(X^n)); A=1/(1-x-x^2*sum(j=0,n,x^j*prod(i=0,j,7*i+1)));return(polcoeff(A,n,X))}
A153189
Triangle T(n,k) = Product_{j=0..k} n*j+1.
Original entry on oeis.org
1, 1, 2, 1, 3, 15, 1, 4, 28, 280, 1, 5, 45, 585, 9945, 1, 6, 66, 1056, 22176, 576576, 1, 7, 91, 1729, 43225, 1339975, 49579075, 1, 8, 120, 2640, 76560, 2756160, 118514880, 5925744000, 1, 9, 153, 3825, 126225, 5175225, 253586025, 14454403425, 939536222625
Offset: 0
Triangle begins as:
1;
1, 2;
1, 3, 15;
1, 4, 28, 280;
1, 5, 45, 585, 9945;
1, 6, 66, 1056, 22176, 576576;
1, 7, 91, 1729, 43225, 1339975, 49579075;
1, 8, 120, 2640, 76560, 2756160, 118514880, 5925744000;
1, 9, 153, 3825, 126225, 5175225, 253586025, 14454403425, 939536222625;
Cf.
A000142 (row 2),
A001147 (3),
A007559 (4),
A007696 (5),
A008548 (6),
A008542 (7),
A045754 (8),
A045755 (9),
A045756 (10),
A144773 (11),
A256268 (combined table).
-
[(&*[n*j+1: j in [0..k]]): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 15 2020
-
seq(seq(mul(n*j+1, j=0..k), k=0..n), n=0..10); # G. C. Greubel, Feb 15 2020
-
T[n_, k_]= If[n==0 && k==0, 1, Product[n*j+1, {j,0,k}]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 15 2020 *)
T[n_, k_]:= T[n, k]= If[k<2, 1+k*n, ((1+n*k)*T[n, k-1] + (1+n*k)*(1+n*(k-1))* T[n, k-2])/2]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* Georg Fischer, Feb 17 2020 *)
-
T(n,k)=prod(j=0,k,n*j+1) \\ M. F. Hasler, Oct 28 2014
-
[[ product(n*j+1 for j in (0..k)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Feb 15 2020
A020034
Nearest integer to Gamma(n + 1/7)/Gamma(1/7).
Original entry on oeis.org
1, 0, 0, 0, 1, 5, 23, 144, 1028, 8370, 76527, 776207, 8649165, 105025576, 1380336142, 19521896861, 295617295326, 4772107767405, 81807561726950, 1484222905617529, 28412267050392705, 572304236300767347
Offset: 0
A368119
Array read by ascending antidiagonals. A(n, k) = Product_{j=0..k-1} (n*j + 1).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 6, 1, 1, 1, 4, 15, 24, 1, 1, 1, 5, 28, 105, 120, 1, 1, 1, 6, 45, 280, 945, 720, 1, 1, 1, 7, 66, 585, 3640, 10395, 5040, 1, 1, 1, 8, 91, 1056, 9945, 58240, 135135, 40320, 1, 1, 1, 9, 120, 1729, 22176, 208845, 1106560, 2027025, 362880, 1
Offset: 0
Array A(n, k) starts:
[0] 1, 1, 1, 1, 1, 1, 1, 1, ... A000012
[1] 1, 1, 2, 6, 24, 120, 720, 5040, ... A000142
[2] 1, 1, 3, 15, 105, 945, 10395, 135135, ... A001147
[3] 1, 1, 4, 28, 280, 3640, 58240, 1106560, ... A007559
[4] 1, 1, 5, 45, 585, 9945, 208845, 5221125, ... A007696
[5] 1, 1, 6, 66, 1056, 22176, 576576, 17873856, ... A008548
[6] 1, 1, 7, 91, 1729, 43225, 1339975, 49579075, ... A008542
[7] 1, 1, 8, 120, 2640, 76560, 2756160, 118514880, ... A045754
[8] 1, 1, 9, 153, 3825, 126225, 5175225, 253586025, ... A045755
-
def A(n, k): return n**k * rising_factorial(1/n, k) if n > 0 else 1
for n in range(9): print([A(n, k) for k in range(8)])
Comments