cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A358019 Numbers m such that the factorizations of m..m+10 have the same number of primes (including multiplicities).

Original entry on oeis.org

202536181, 913535284, 1124342785, 1443929905, 1587749041, 1688485665, 1733574769, 2090053141, 2308638625, 2403102228, 2751673525, 2841766801, 2898584161, 2936217602, 3195380868, 3195380869, 3324630612, 3423884341, 3520752468
Offset: 1

Views

Author

Keywords

Comments

a(111) = 21117216104 is the first term where the number of primes is 5. - Zak Seidov and Robert Israel, Jun 27 2024

Crossrefs

Numbers m through m+k have the same number of prime divisors (with multiplicity): A045920 (k=1), A045939 (k=2), A045940 (k=3), A045941 (k=4), A045942 (k=5), A123103 (k=6), A123201 (k=7), A358017 (k=8), A358018 (k=9), this sequence (k=10).

Programs

  • PARI
    list(lim)=my(v=List(),ct,cur); forfactored(n=202536181,lim\1+10, my(t=bigomega(n)); if(t==cur, if(ct++>9, listput(v,n[1]-10)), cur=t; ct=0)); Vec(v)

A045984 a(n) = smallest number m such that factorizations of n consecutive integers starting at m have same number of primes (counted with multiplicity).

Original entry on oeis.org

1, 2, 33, 602, 602, 2522, 211673, 3405122, 3405122, 49799889, 202536181, 3195380868, 5208143601, 85843948321, 97524222465
Offset: 1

Views

Author

Keywords

Comments

a(16) > 10^13. a(16) must have at least 5 prime factors (counted with multiplicity) because one of the 16 consecutive numbers is divisible by 2^4. - Donovan Johnson, Apr 01 2013

Examples

			a(4) = 602 as 602 = 2 * 7 * 43, 603 = 3 * 3 * 67, 604 = 2 * 2 * 151, 605 = 5 * 11 * 11 so four consecutive positive integers have the same number of prime factors starting at 602, the first such number. - _David A. Corneth_, Feb 24 2024
		

Crossrefs

Extensions

More terms from Vladeta Jovovic, Aug 06 2002
More terms from Martin Fuller, Nov 21 2006

A077657 Least number with exactly n consecutive successors, all having the same number of prime factors (counted with multiplicity).

Original entry on oeis.org

1, 2, 33, 603, 602, 2522, 211673, 3405123, 3405122, 49799889, 202536181, 3195380868, 5208143601, 85843948321, 97524222465
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 13 2002

Keywords

Comments

A001222(a(n))=A001222(a(n)+k) for k<=n;
A077655(a(n))=n and A077655(k)

Examples

			a(0)=A077656(1)=1; a(1)=A045920(1)=2; a(2)=A045939(1)=33; a(3)=A045940(2)=603; a(4)=A045941(1)=602; a(5)=A045942(1)=2522.
		

Crossrefs

Cf. A045984.

Formula

a(n)=A045984(n+1)+A077655(A045984(n+1))-n - Martin Fuller, Nov 21 2006

Extensions

More terms from Martin Fuller, Nov 21 2006

A338453 Starts of runs of 3 consecutive numbers with the same total binary weight of their divisors (A093653).

Original entry on oeis.org

3, 242, 243, 1837, 2361, 3693, 3728, 6061, 6457, 9782, 11181, 11721, 13855, 15177, 20017, 22591, 28021, 31461, 31887, 33098, 33993, 38137, 52016, 52112, 60321, 76897, 78542, 78745, 80461, 108394, 116017, 119541, 124453, 125493, 127117, 127417, 145369, 151805, 154113
Offset: 1

Author

Amiram Eldar, Oct 28 2020

Keywords

Comments

Numbers k such that A093653(k) = A093653(k+1) = A093653(k+2).

Examples

			3 is a term since A093653(3) = A093653(4) = A093653(5) = 3.
		

Crossrefs

Cf. A093653.
Subsequence of A338452.
Similar sequences: A005238, A006073, A045939.

Programs

  • Mathematica
    f[n_] := DivisorSum[n, DigitCount[#, 2, 1] &]; s = {}; m = 3; fs = f /@ Range[m]; Do[If[Equal @@  fs, AppendTo[s, n - m]]; fs = Rest @ AppendTo[fs, f[n]], {n, m + 1, 155000}]; s
    SequencePosition[Table[Total[DigitCount[Divisors[n],2,1]],{n,160000}],{x_,x_,x_}][[All,1]] (* Harvey P. Dale, Feb 04 2023 *)

A077655 Number of consecutive successors of n having the same number of prime factors as n (counted with multiplicity).

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Author

Reinhard Zumkeller, Nov 13 2002

Keywords

Comments

If a(n) > 0 then a(n+1) = a(n)-1.

Examples

			33=3*11 has only two successors also with two factors: 34=2*17 and 35=5*7 (whereas 33+3=36=2*2*3*3), therefore a(33)=2.
		

Programs

  • Mathematica
    snpf[n_]:=Module[{f=PrimeOmega[n],k=0},While[f==PrimeOmega[n+k],k++];k]; Array[snpf,110]-1 (* Harvey P. Dale, Aug 01 2021 *)
  • PARI
    A077655(n) = { my(k=n+1,w=bigomega(n)); while(bigomega(k)==w,k++); (k-n)-1; }; \\ Antti Karttunen, Jan 22 2020

A355711 Starts of runs of 3 consecutive numbers with the same number of 5-smooth divisors.

Original entry on oeis.org

33, 85, 93, 145, 213, 265, 393, 445, 453, 475, 505, 633, 685, 753, 805, 813, 865, 933, 985, 993, 1045, 1113, 1165, 1293, 1345, 1353, 1405, 1430, 1533, 1585, 1624, 1653, 1705, 1713, 1765, 1833, 1885, 1893, 1945, 2013, 2065, 2193, 2245, 2253, 2275, 2305, 2433, 2485
Offset: 1

Author

Amiram Eldar, Jul 15 2022

Keywords

Comments

Numbers k such that A355583(k) = A355583(k+1) = A355583(k+2).

Examples

			33 is a term since A355583(33) = A355583(34) = A355583(35) = 2.
		

Crossrefs

Cf. A355583.
Subsequence of A355710.
A355712 is a subsequence.
Similar sequences: A005238, A006073, A045939, A332313, A332387.

Programs

  • Mathematica
    f[n_] := Times @@ (1 + IntegerExponent[n, {2, 3, 5}]); s = {}; m = 3; fs = f /@ Range[m]; Do[If[Equal @@ fs, AppendTo[s, n - m]]; fs = Rest @ AppendTo[fs, f[n]], {n, m + 1, 2500}]; s
  • PARI
    s(n) = (valuation(n, 2) + 1) * (valuation(n, 3) + 1) * (valuation(n, 5) + 1);
    s1 = s(1); s2 = s(2); for(k = 3, 2500, s3 = s(k); if(s1 == s2 && s2 == s3, print1(k-2,", ")); s1 = s2; s2 = s3);

A278311 Numbers n such that n-1 and n+1 have the same number of prime factors as n (with multiplicity).

Original entry on oeis.org

34, 86, 94, 122, 142, 171, 202, 214, 218, 245, 285, 302, 394, 429, 435, 446, 507, 603, 604, 605, 634, 638, 698, 842, 922, 963, 1042, 1075, 1084, 1085, 1131, 1138, 1245, 1262, 1275, 1310, 1346, 1402, 1413, 1431, 1435, 1449, 1491, 1533, 1557, 1587, 1605, 1635, 1642, 1676, 1762, 1772, 1838, 1886, 1894, 1925, 1942
Offset: 1

Author

Ely Golden, Nov 17 2016

Keywords

Examples

			a(1) = 34, as 33, 34, and 35 all have 2 prime factors.
a(2) = 86, as 85, 86, and 87 all have 2 prime factors.
		

Crossrefs

Intersection of A045920 and A278291.
a(n) = A045939(n) + 1.

Programs

  • Java
    public class A278311{
    public static void main(String[] args)throws Exception{
        long dim0=numberOfPrimeFactors(2);//note that this method must be manually implemented by the user
        long dim1=numberOfPrimeFactors(3);
        long dim2;
        long counter=4;
        long index=1;
        while(index<=10000){
          dim2=numberOfPrimeFactors(counter);
          if(dim2==dim1&&dim1==dim0){System.out.println(index+" "+(counter-1));index++;}
          dim0=dim1;
          dim1=dim2;
          counter++;
        }
      }
    }
    
  • PARI
    isok(n) = (bigomega(n-1) == bigomega(n)) && (bigomega(n) == bigomega(n+1)); \\ Michel Marcus, Nov 17 2016
  • SageMath
    def bigomega(x):
        s=0;
        f=list(factor(x));
        for c in range(len(f)):
            s+=f[c][1]
        return s;
    dim0=bigomega(2);
    dim1=bigomega(3);
    counter=4
    index=1
    while(index<=10000):
        dim2=bigomega(counter);
        if(dim2==dim1&dim1==dim0):
            print(str(index)+" "+str(counter-1))
            index+=1;
        dim0=dim1;
        dim1=dim2;
        counter+=1;
    

A176292 Numbers k such that the prime factorizations of composite(k) and composite(k+1) have the same number of primes (including multiplicities).

Original entry on oeis.org

1, 4, 7, 10, 12, 15, 17, 18, 21, 22, 25, 28, 29, 40, 47, 53, 61, 62, 64, 68, 69, 72, 85, 87, 90, 91, 93, 100, 102, 106, 107, 110, 112, 114, 116, 120, 125, 130, 131, 132, 133, 136, 151, 154, 155, 158, 165, 166, 169, 170, 179, 181, 190, 191, 198, 212, 221, 222, 223
Offset: 1

Author

Juri-Stepan Gerasimov, Apr 14 2010

Keywords

Crossrefs

Programs

  • Maple
    A001222 := proc(n) numtheory[bigomega](n) ; end proc:
    A002808 := proc(n) if n = 1 then return 4; else for a from procname(n-1)+1 do if not isprime(a) then return a; end if; end do; end if; end proc:
    for n from 1 to 400 do if A001222(A002808(n)) = A001222(A002808(n+1)) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Apr 20 2010
  • Mathematica
    SequencePosition[PrimeOmega/@Select[Range[300],CompositeQ],{x_,x_}][[;;,1]] (* Harvey P. Dale, Jun 21 2023 *)

Formula

A001222(A002808(a(n))) = A001222(A002808(a(n)+1)).

Extensions

Corrected (86 replaced with 87, 89 removed, many terms after 92 replaced) by R. J. Mathar, Apr 20 2010

A374023 Numbers m such that m .. m+11 all have the same number of prime factors, counted with multiplicity.

Original entry on oeis.org

3195380868, 5208143601, 5208143602, 5327400945, 5604994082, 5604994083, 6940533603, 6940533604, 7109053186, 7112231268, 19355940562, 22180594465, 24073076004, 24155988484, 29495293764, 30997967601, 41999754228, 42322452483, 42322452484, 45479198003, 46553917683
Offset: 1

Author

Zak Seidov and Robert Israel, Jun 25 2024

Keywords

Comments

Since a(3) = a(2) + 1, a(6) = a(5) + 1 and a(8) = a(7) + 1, a(2) = 5208143601, a(5) = 5604994082 and a(7) = 6940533603 are the first three m such that m .. m+12 have the same number of prime factors, counted with multiplicity.
For n <= 12, A001222(a(n)) = 4. It must always be at least 4 because at least one of a(n) .. a(n)+11 is divisible by 8.

Examples

			5208143601 is a term because
  5208143601 = 3 * 139 * 2153 * 5801
  5208143602 = 2 * 47 * 4261 * 13003
  5208143603 = 13 * 103 * 419 * 9283
  5208143604 = 2^2 * 3 * 434011967
  5208143605 = 5 * 7^2 * 21257729
  5208143606 = 2 * 37 * 109 * 645691
  5208143607 = 3^2 * 647 * 894409
  5208143608 = 2^3 * 651017951
  5208143609 = 73^2 * 367 * 2663
  5208143610 = 2 * 3 * 5 * 173604787
  5208143611 = 11 * 29 * 1129 * 14461
  5208143612 = 2^2 * 7 * 186005129
all have 4 prime factors, counted with multiplicity.
		

Crossrefs

Subsequence of A033987.
Cf. A001222.
Numbers m through m+k have the same value of A001222: A045920 (k=1), A045939 (k=2), A045940 (k=3), A045941 (k=4), A045942 (k=5), A123103 (k=6), A123201 (k=7), A358017 (k=8), A358018 (k=9), A358019 (k=10).

Programs

  • PARI
    isok(m) = #Set(apply(bigomega, vector(11, i, m+i-1))) == 1; \\ Michel Marcus, Jul 11 2024

Formula

A001222(a(n)) = A001222(a(n)+1) = ... = A001222(a(n)+11).

Extensions

Missing term inserted by, and more terms from Martin Ehrenstein, Jul 11 2024

A334583 Numbers m such that m, m + 1 and m + 2 each have exactly eight prime factors, not necessarily distinct.

Original entry on oeis.org

40909374, 71410624, 87278750, 126237375, 152439488, 161590624, 166450624, 209140623, 227929624, 243409374, 267308990, 267639470, 290696768, 291513248, 292088510, 295644734, 307885374, 310314158, 319874750, 321890750, 331690624, 336958622, 343030624, 352749248, 354109374, 356269374, 366681248, 391390623, 401375168, 407590623
Offset: 1

Author

Zak Seidov, May 06 2020

Keywords

Examples

			40909374 = 2 * 3^4 * 11^2 * 2087, 40909375 = 5^5 * 13 * 19 * 53, and 40909376 = 2^6 * 179 * 3571.
		

Crossrefs

Intersection of A045939 and A046310.

Programs

  • PARI
    list(lim)=my(v=List(), k, o); forfactored(n=40909374, lim\1+2, o=bigomega(n); if(o==8, if(k++>2, listput(v, n[1]-2)), k=0)); Vec(v) \\ Charles R Greathouse IV, May 07 2020

Formula

A001222(a(n)+i) = 8 for i in {0,1,2}.
Previous Showing 11-20 of 21 results. Next