cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 34 results. Next

A084820 Numbers n such that n, sigma(n) and phi(n) form an integer triangle, where sigma=A000203 is the divisor sum and phi=A000010 the totient.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 47, 49, 51, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 137
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 04 2003

Keywords

Comments

a(n)<=A000203(a(n))+A000010(a(n)), A000203(a(n))<=a(n)+A000010(a(n)), A000010(a(n))<=a(n)+A000203(a(n)); values are odd, see A084821 for odd numbers which are not in the sequence.

Examples

			n=5, a(5)=9: phi(9)=6, sigma(9)=13: (6,9,13)=(A070080(176), A070081(176), A070082(176)).
		

Crossrefs

Cf. A046022.

Programs

  • Mathematica
    Select[Range[1, 140, 2], DivisorSigma[1, #] < EulerPhi[#] + # &] (* Amiram Eldar, Sep 12 2019 *)
  • PARI
    is(n)=eulerphi(n)+n>sigma(n) \\ Charles R Greathouse IV, Feb 19 2013

A240471 Integer part of (n * A000005(n) / A000203(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 3, 1, 3, 1, 3, 2, 2, 2, 3, 1, 2, 2, 3, 1, 3, 1, 3, 3, 2, 1, 3, 2, 3, 2, 3, 1, 3, 3, 3, 2, 2, 1, 4, 1, 2, 3, 3, 3, 3, 1, 3, 2, 3, 1, 4, 1, 2, 3, 3, 3, 3, 1, 4, 3, 2, 1, 4, 3, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 06 2014

Keywords

Crossrefs

Programs

  • Haskell
    a240471 n = n * a000005 n `div` a000203 n
    
  • PARI
    a(n) = n*numdiv(n)\sigma(n); \\ Michel Marcus, Dec 02 2020

Formula

a(n) = (A038040(n) - A106315(n)) / A000203(n);
a(A046022(n)) = 1.

A244329 a(n) = floor(antisigma(n) / sigma(n)) = floor(A024816(n) / A000203(n)).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 2, 1, 2, 2, 4, 1, 5, 3, 4, 3, 7, 3, 8, 4, 6, 6, 10, 4, 9, 7, 8, 6, 13, 5, 14, 7, 10, 10, 12, 6, 17, 11, 12, 8, 19, 8, 20, 10, 12, 14, 22, 8, 20, 12, 17, 13, 25, 11, 20, 12, 19, 18, 28, 9, 29, 19, 18, 15, 24, 14, 32, 17, 24, 16, 34, 12, 35, 23
Offset: 1

Views

Author

Jaroslav Krizek, Jul 08 2014

Keywords

Comments

RECORD transform of a(n) is A140475 (union of number 1 and primes >= 5).
Sequence of numbers n such that a(n) = floor(antisigma(n) / n) = A046022.
Sequence of numbers n such that a(n) = a(n+1) = A244666.

Examples

			For n = 10; a(10) = floor(A024816(10) / A000203(10)) = floor(37 / 18) = 2.
		

Crossrefs

Programs

  • Magma
    [Floor(((n*(n+1)div 2)-SumOfDivisors(n)) div (SumOfDivisors(n))) : n in [1..1000]];
  • Mathematica
    A244329[n_] := Floor[(n*(n + 1)/2 - #)/#] & [DivisorSigma[1, n]];
    Array[A244329, 100] (* Paolo Xausa, Sep 01 2024 *)

Formula

a(n) = A244327(n) - A244328(n) for n >= 7.

A067830 Primes p such that sigma(p-4) < p.

Original entry on oeis.org

5, 7, 11, 17, 23, 41, 47, 71, 83, 101, 107, 113, 131, 167, 197, 227, 233, 281, 311, 317, 353, 383, 401, 443, 461, 467, 491, 503, 617, 647, 677, 743, 761, 773, 827, 857, 863, 881, 887, 911, 941, 971, 1013, 1091, 1097, 1217, 1283, 1301, 1307, 1427, 1433, 1451
Offset: 1

Views

Author

Benoit Cloitre, Feb 08 2002

Keywords

Comments

Except for the first term, terms are primes of the form p+4 with p prime, i.e., the sequence is essentially A031505, A046132. In other words, the solutions to sigma(x) < x + 4 are 1,2,4 and the odd primes. - Ralf Stephan, Feb 09 2004

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[3, 230]], DivisorSigma[1, #-4] < # &] (* Amiram Eldar, Apr 25 2025 *)
  • PARI
    isok(p) = isprime(p) && (p>4) && (sigma(p-4) < p); \\ Michel Marcus, Feb 15 2021

Extensions

Edited by Charles R Greathouse IV, Mar 19 2010

A105602 Divide each Fibonacci number by its primitive part.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 3, 2, 5, 1, 24, 1, 13, 10, 21, 1, 136, 1, 165, 26, 89, 1, 1008, 5, 233, 34, 1131, 1, 26840, 1, 987, 178, 1597, 65, 46512, 1, 4181, 466, 47355, 1, 1269736, 1, 53133, 10370, 28657, 1, 2179296, 13, 825275, 3194, 364179, 1, 14927768, 445
Offset: 1

Views

Author

Paul Barry, Apr 15 2005

Keywords

Comments

Sylvester dividends for Fibonacci numbers.
a(n)=1 for n=1, 4 and all primes, which is sequence A046022.

Crossrefs

Programs

  • Mathematica
    a[n_] := Fibonacci[n]/Product[Fibonacci[d]^MoebiusMu[n/d], {d, Divisors[n]}]; Table[a[n],{n,55}] (* James C. McMahon, Jan 25 2024 *)

Formula

a(n) = Fibonacci(n)/A061446(n).

A178156 Numbers m such that (m-1)! is not divisible by m^2.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 17, 19, 22, 23, 26, 29, 31, 34, 37, 38, 41, 43, 46, 47, 53, 58, 59, 61, 62, 67, 71, 73, 74, 79, 82, 83, 86, 89, 94, 97, 101, 103, 106, 107, 109, 113, 118, 122, 127, 131, 134, 137, 139, 142, 146, 149, 151, 157, 158, 163
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 17 2010

Keywords

Comments

Union of {8, 9} and A001751.

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis II (Springer 1924, reprinted 1972), Part Eight, Chap. 3, Sect. 1, Problem 133b.

Crossrefs

Programs

  • Haskell
    import Data.List (insert)
    a178156 n = a178156_list !! (n-1)
    a178156_list = insert 9 $ insert 8 a001751_list
    -- Reinhard Zumkeller, Oct 14 2014
    
  • Mathematica
    Select[Range[200],!Divisible[(#-1)!,#^2]&] (* Harvey P. Dale, Mar 06 2016 *)
  • PARI
    for(m=1,3e2,if((m-1)!%m^2,print1(m", "))) \\ Charles R Greathouse IV, Aug 21 2011
    
  • Python
    from sympy import primepi
    def A178156(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-primepi(x)-primepi(x>>1)-(x>=8)-(x>=9))
        return bisection(f,n,n) # Chai Wah Wu, Oct 17 2024

Extensions

Entries corrected by Charles R Greathouse IV, Aug 21 2011

A300858 a(n) = A243823(n) - A243822(n).

Original entry on oeis.org

0, 0, 0, 0, 0, -1, 0, 1, 1, -1, 0, -1, 0, 1, 2, 4, 0, -1, 0, 3, 4, 3, 0, 3, 3, 5, 6, 7, 0, -5, 0, 11, 6, 7, 6, 6, 0, 9, 8, 11, 0, 1, 0, 13, 12, 13, 0, 13, 5, 13, 12, 17, 0, 13, 10, 19, 14, 19, 0, 5, 0, 21, 18, 26, 12, 11, 0, 23, 18, 15, 0, 25, 0, 25, 24, 27
Offset: 1

Views

Author

Michael De Vlieger, Mar 14 2018

Keywords

Comments

Consider numbers in the cototient of n, listed in row n of A121998. For composite n > 4, there are nondivisors m in the cototient, listed in row n of A133995. Of these m, there are two species. The first are m that divide n^e with integer e > 1, while the last do not divide n^e. These are listed in row n of A272618 and A272619, and counted by A243822(n) and A243823(n), respectively. This sequence is the difference between the latter and the former species of nondivisors in the cototient of n.
Since A045763(n) = A243822(n) + A243823(n), this sequence examines the balance of the two components among nondivisors in the cototient of n.
For positive n < 6 and for p prime, a(n) = a(p) = 0, thus a(A046022(n)) = 0.
For prime powers p^e, a(p^e) = A243823(p^e), since A243822(p^e) = 0, thus a(n) = A243823(n) for n in A000961.
Value of a(n) is generally nonnegative; a(n) is negative for n = {6, 10, 12, 18, 30}; a(30) = -5, but a(n) = -1 for the rest of the aforementioned numbers. These five numbers are a subset of A295523.

Examples

			a(6) = -1 since the only nondivisor in the cototient of 6 is 4, which divides 6^e with e > 1; therefore 0 - 1 = -1.
a(8) = 1 since the only nondivisor in the cototient of 8 is 6, and 6 does not divide 8^e with e > 1, therefore 1 - 0 = 1.
Some values of a(n) and related sequences:
   n  a(n) A243823(n) A243822(n)    A272619(n)       A272618(n)
  -------------------------------------------------------------
   1   0          0          0      -                -
   2   0          0          0      -                -
   3   0          0          0      -                -
   4   0          0          0      -                -
   5   0          0          0      -                -
   6  -1          0          1      -                {4}
   7   0          0          0      -                -
   8   1          1          0      {6}              -
   9   1          1          0      {6}              -
  10  -1          1          2      {6}              {4,8}
  11   0          0          0      -                -
  12  -1          1          2      {10}             {8,9}
  13   0          0          0      -                -
  14   1          3          2      {6,10,12}        {4,8}
  15   2          3          1      {6,10,12}        {9}
  16   4          4          0      {6,10,12,14}     -
  17   0          0          0      -                -
  18  -1          3          4      {10,14,15}       {4,8,12,16}
  19   0          0          0      -                -
  20   3          5          2      {6,12,14,15,18}  {8,16}
  ...
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Count[Range@ n, _?(PowerMod[n, Floor@ Log2@ n, #] == 0 &)]; Array[#1 - #3 + 1 - 2 #2 + #4 & @@ {#, f@ #, EulerPhi@ #, DivisorSigma[0, #]} &, 76]
  • PARI
    a(n) = 1 + n + numdiv(n) - eulerphi(n) - 2*sum(k=1, n, if(gcd(n,k)-1, 0, moebius(k)*(n\k))); \\ Michel Marcus, Mar 17 2018

Formula

a(n) = 1 + n - A000010(n) - 2*A010846(n) + A000005(n).

A244666 Numbers n such that floor(antisigma(n) / sigma(n)) = floor(antisigma(n+1) / sigma(n+1)).

Original entry on oeis.org

1, 2, 3, 9, 21, 33, 81, 261, 897, 1334, 1364, 2974, 4364, 14282, 26937, 46593, 64665, 74918, 79833, 92685, 145215, 147454, 161001, 162602, 166934, 289454, 347738, 383594, 422073, 430137, 440013, 443402, 445874, 621027, 649154, 655005, 1174305, 1187361, 1670955
Offset: 1

Views

Author

Jaroslav Krizek, Jul 08 2014

Keywords

Comments

Also numbers n such that floor((n*(n+1)/2) / sigma(n)) = floor(((n+1)*(n+2)/2) / sigma(n+1)).
Numbers n such that A244327(n) = A244327(n+1).
Numbers n such that A244329(n) = A244329(n+1).

Crossrefs

Programs

  • Magma
    [n: n in [1..10^6] | Floor((n*(n+1)div 2) div (SumOfDivisors(n))) eq Floor(((n+1)*(n+2)div 2) div (SumOfDivisors(n+1)))]

A062816 a(n) = phi(n)*tau(n) - 2n = A000010(n)*A000005(n) - 2*n.

Original entry on oeis.org

-1, -2, -2, -2, -2, -4, -2, 0, 0, -4, -2, 0, -2, -4, 2, 8, -2, 0, -2, 8, 6, -4, -2, 16, 10, -4, 18, 16, -2, 4, -2, 32, 14, -4, 26, 36, -2, -4, 18, 48, -2, 12, -2, 32, 54, -4, -2, 64, 28, 20, 26, 40, -2, 36, 50, 80, 30, -4, -2, 72, -2, -4, 90, 96, 62, 28, -2, 56, 38, 52, -2, 144, -2, -4, 90, 64, 86, 36, -2, 160, 108, -4, -2, 120, 86, -4
Offset: 1

Views

Author

Labos Elemer, Jul 20 2001

Keywords

Comments

It can be shown that phi(n)*tau(n) >= n, which means that quotient = n/tau(n) <= phi(n); note: a(n)+5 is positive.
The value is always positive except when a(n) = 0 for {8,9,12}; or a(n) = -2 for primes together with 4 (i.e., for A046022 but without 1); or a(n) = -4 for A001747 (without 2 and 4); or a(n) = -1 for n = 1.

Crossrefs

Programs

  • Mathematica
    Table[EulerPhi[n]DivisorSigma[0,n]-2n,{n,90}] (* Harvey P. Dale, Feb 03 2021 *)
  • PARI
    a(n)={eulerphi(n)*numdiv(n) - 2*n} \\ Harry J. Smith, Aug 11 2009

Formula

a(n) = A062355(n) - 2*n. - Amiram Eldar, Jul 10 2024

Extensions

Offset changed from 0 to 1 by Harry J. Smith, Aug 11 2009

A109853 a(n) = A109852(2^n).

Original entry on oeis.org

1, 2, 5, 9, 13, 19, 29, 37, 43, 53, 61, 71, 79, 89, 101, 107, 113, 131, 139, 151, 163, 173, 181, 193, 199, 223, 229, 239, 251, 263, 271, 281, 293, 311, 317, 337, 349, 359, 373, 383, 397, 409, 421, 433, 443, 457, 463, 479, 491, 503, 521, 541, 557, 569, 577, 593
Offset: 0

Views

Author

Amarnath Murthy, Jul 07 2005

Keywords

Comments

Conjecture: a(n) is prime if n is not 0 nor 2.
Conjecture: a(n) is the (2n-2)nd prime for n>1. A109852(2^n-1): 1,3,5,11,17,23,31,41,47,59,67,73. - Robert G. Wilson v, Jun 14 2006
Conjecture: the Union of A109852(2^n-1) & A109852(2^n) is A046022: {1,2,3,4,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79, ...,} and except for 4, equals A008578: The noncomposite numbers. - Robert G. Wilson v, Jun 14 2006

Crossrefs

Programs

  • Mathematica
    f[s_] := Block[{k = 2, len = Length@s}, exp = Ceiling[Log[2, len]]; m = s[[2^exp - len + 1]]; While[MemberQ[s, k*m], k++ ]; Append[s, k*m]]; Rest@Nest[f, {1, 1}, 70]; t = Rest@Nest[f, {1, 1}, 2^14 + 3]; Table[t[[2^n]], {n, 0, 14}] (* Robert G. Wilson v, Jun 14 2006 *)
  • PARI
    See Links section.

Extensions

More terms from Robert G. Wilson v, Jun 14 2006
More terms from Rémy Sigrist, May 19 2019
Previous Showing 11-20 of 34 results. Next