cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A339328 Integers m such that A240471(m) > A115588(m).

Original entry on oeis.org

16, 24, 27, 28, 32, 36, 44, 48, 50, 52, 54, 55, 60, 64, 65, 68, 72, 76, 77, 80, 81, 84, 85, 90, 91, 92, 95, 96, 98, 100, 105, 108, 110, 112, 115, 116, 119, 120, 124, 125, 126, 128, 130, 132, 133, 135, 136, 140, 143, 144, 145, 148, 150, 152, 154, 155, 156, 160
Offset: 1

Views

Author

Thomas Scheuerle, Nov 30 2020

Keywords

Comments

Integers m such that integer part of the harmonic mean of divisors of m is greater than the number of distinct prime numbers necessary to represent m.
For all m not in this sequence this integer part is equal to the number of distinct prime numbers necessary to represent m.
This correlation between A240471 and A115588 contains some apparently random component.
If the integer part of the harmonic mean of divisors of m equals 1 we will find an 1 in A115588(m) too, for all m. If the integer part of the harmonic mean of divisors of m equals 2 we will find 2 in A115588(m) too, with probability of ~0.9877 for m in range 2-1000.
For m until 10000 the only exceptions are 16 and 27. If the integer part of the harmonic mean of divisors of m equals 3 we will find 3 in A115588(m) too, with probability of ~0.1983 for m in range 2-1000. For integer parts greater than 3 the probability gets fast smaller.
If m is a square of a prime it is not in this sequence.
Let m be a semiprime with two distinct prime factors p1 and p2. If m >= 3(1+p1+p2) then m is in this sequence. Example: 55 > 3(1+5+11). This can be generalized for k-almostprimes if all factors are distinct: If m(2^k) >= (1+k)sigma(m) then m is in this sequence. Example: 105*8 > 4*192.
Let p be a prime greater than 2. Let o be a natural number >0 without divisor p, then if m = o*p^p, m is in this sequence. This can be generalized for a set of distinct primes >2 {p_1,p_2,...,p_n} and any permutation of this set {p_a,p_b,...,p_z}, then if m = o*p_1^p_a*p_2^p_b*...*p_n^p_z, m is in this sequence. Example: 3960 = 55*2^3*3^2.
The sequence includes all numbers whose prime factorization contains at least one composite exponent (A322448).

Crossrefs

Programs

  • PARI
    listf(f, list) = {for (k=1, #f~, listput(list, f[k,1]); if (isprime(f[k,2]), listput(list, f[k,2]), if (f[k,2] > 1, my(vexp = Vec(listf(factor(f[k,2]), list))); for (i=1, #vexp, listput(list, vexp[i]););););); list;}
    a8(n) = {my(f=factor(n), list=List()); #select(isprime, Set(Vec(listf(f, list))));}
    a1(n) = n*numdiv(n)\sigma(n);
    isok(m) = a1(m) > a8(m); \\ Michel Marcus, Dec 02 2020

A038040 a(n) = n*d(n), where d(n) = number of divisors of n (A000005).

Original entry on oeis.org

1, 4, 6, 12, 10, 24, 14, 32, 27, 40, 22, 72, 26, 56, 60, 80, 34, 108, 38, 120, 84, 88, 46, 192, 75, 104, 108, 168, 58, 240, 62, 192, 132, 136, 140, 324, 74, 152, 156, 320, 82, 336, 86, 264, 270, 184, 94, 480, 147, 300, 204, 312, 106, 432, 220, 448, 228, 232, 118
Offset: 1

Views

Author

Keywords

Comments

Dirichlet convolution of sigma(n) (A000203) with phi(n) (A000010). - Michael Somos, Jun 08 2000
Dirichlet convolution of f(n)=n with itself. See the Apostol reference for Dirichlet convolutions. - Wolfdieter Lang, Sep 09 2008
Sum of all parts of all partitions of n into equal parts. - Omar E. Pol, Jan 18 2013

Examples

			For n = 6 the partitions of 6 into equal parts are [6], [3, 3], [2, 2, 2], [1, 1, 1, 1, 1, 1]. The sum of all parts is 6 + 3 + 3 + 2 + 2 + 2 + 1 + 1 + 1 + 1 + 1 + 1 = 24 equalling 6 times the number of divisors of 6, so a(6) = 24. - _Omar E. Pol_, May 08 2021
		

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, pp. 29 ff.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 162.

Crossrefs

Cf. A038044, A143127 (partial sums), A328722 (Dirichlet inverse).
Column 1 of A329323.

Programs

  • Haskell
    a038040 n = a000005 n * n  -- Reinhard Zumkeller, Jan 21 2014
    
  • Maple
    with(numtheory): A038040 := n->tau(n)*n;
  • Mathematica
    a[n_] := DivisorSigma[0, n]*n; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Sep 03 2012 *)
  • MuPAD
    n*numlib::tau (n)$ n=1..90 // Zerinvary Lajos, May 13 2008
    
  • PARI
    a(n)=if(n<1,0,direuler(p=2,n,1/(1-p*X)^2)[n])
    
  • PARI
    a(n)=if(n<1,0,polcoeff(sum(k=1,n,k*x^k/(x^k-1)^2,x*O(x^n)),n)) /* Michael Somos, Jan 29 2005 */
    
  • PARI
    a(n) = n*numdiv(n); \\ Michel Marcus, Oct 24 2020
    
  • Python
    from sympy import divisor_count as d
    def a(n): return n*d(n)
    print([a(n) for n in range(1, 60)]) # Michael S. Branicky, Mar 15 2022
    
  • SageMath
    [n*sigma(n,0) for n in range(1, 60)] # Stefano Spezia, Jul 20 2025

Formula

Dirichlet g.f.: zeta(s-1)^2.
G.f.: Sum_{n>=1} n*x^n/(1-x^n)^2. - Vladeta Jovovic, Dec 30 2001
Sum_{k=1..n} sigma(gcd(n, k)). Multiplicative with a(p^e) = (e+1)*p^e. - Vladeta Jovovic, Oct 30 2001
Equals A127648 * A127093 * the harmonic series, [1/1, 1/2, 1/3, ...]. - Gary W. Adamson, May 10 2007
Equals row sums of triangle A127528. - Gary W. Adamson, May 21 2007
a(n) = n*A000005(n) = A066186(n) - n*(A000041(n) - A000005(n)) = A066186(n) - n*A144300(n). - Omar E. Pol, Jan 18 2013
a(n) = A000203(n) * A240471(n) + A106315(n). - Reinhard Zumkeller, Apr 06 2014
L.g.f.: Sum_{k>=1} x^k/(1 - x^k) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 13 2017
a(n) = Sum_{d|n} A018804(d). - Amiram Eldar, Jun 23 2020
a(n) = Sum_{d|n} phi(d)*sigma(n/d). - Ridouane Oudra, Jan 21 2021
G.f.: Sum_{n >= 1} q^(n^2)*(n^2 + 2*n*q^n - n^2*q^(2*n))/(1 - q^n)^2. - Peter Bala, Jan 22 2021
a(n) = Sum_{k=1..n} sigma(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021
Define f(x) = #{n <= x: a(n) <= x}. Gabdullin & Iudelevich show that f(x) ~ x/sqrt(log x). That is, there are 0 < A < B such that Ax/sqrt(log x) < f(x) < Bx/sqrt(log x). - Charles R Greathouse IV, Mar 15 2022
Sum_{k=1..n} a(k) ~ n^2*log(n)/2 + (gamma - 1/4)*n^2, where gamma is Euler's constant (A001620). - Amiram Eldar, Oct 25 2022
Mobius transform of A060640. - R. J. Mathar, Feb 07 2023

A046022 Primes together with 1 and 4.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269
Offset: 1

Views

Author

Keywords

Comments

Also the numbers which are incrementally largest values of A002034. - validated by Franklin T. Adams-Watters, Jul 13 2012
Solutions to A000005(x) + A000010(x) - x - 1 = 0. - Labos Elemer, Aug 23 2001
Also numbers m such that m, phi(m) and tau(m) form an integer triangle, where phi=A000010 is the totient and tau=A000005 the number of divisors (see also A084820). - Reinhard Zumkeller, Jun 04 2003
Terms > 1 are n such that n does not divide (n-1)!. - Benoit Cloitre, Nov 12 2003
Terms > 1 are the sum of their prime factors; 4 (= 2+2) is the only such composite number. - Stuart Orford (sjorford(AT)yahoo.co.uk), Aug 04 2005
From Jonathan Vos Post, Aug 23 2010, Robert G. Wilson v, Aug 25 2010, proof by D. S. McNeil, Aug 29 2010: (Start)
Also the numbers n which divide A001414(n), or equivalently divide A075254(n). Proof:
Theorem: for a multiset of m >= 2 integers a_i, each a_i >= 2, Product_{i=1..m} a_i >= Sum_{i=1..m} a_i, with equality only at (a_1,a_2) = (2,2).
Lemma: For integers x,y >= 2, if x > 2 or y > 2, x*y > x + y. This follows from distributing (x-1)*(y-1) > 1.
[Proof of the theorem by induction on m:
first consider m=2. We have equality at (2,2) and for any product(a_i) > 4 there is some a_i > 2, so the lemma gives a_1*a_2 > a_1+a_2.
Then the induction m->m+1: Product_{i=1..m+1} a_i = a_(m+1)*Product_{i=1..m} a_i >= a_(m+1) * Sum_{i=1..m} a_i.
Since a_(m+1) >= 2 and the sum >= 4, the lemma applies, and we find a_(m+1) * Sum+{i=1..m} a_i > a_(m+1) + Sum_{i=1..m} a_i = Sum_{i=1..m+1} a_i and thus Product_{i=1..m+1} a_i > Sum_{i=1..m+1} a_i, QED.]
For composite n > 4, applying the theorem to the multiset of prime factors with multiplicity yields n > sopfr(n), so there are no composite numbers greater than 4 such that they divide sopfr(n).
(End)
Numbers k such that the k-th Fibonacci number is relatively prime to all smaller Fibonacci numbers. - Charles R Greathouse IV, Jul 13 2012
Numbers k such that (-1)^k*floor(d(k)*(-1)^k/2) = 1, where d(k) is the number of divisors of k. - Wesley Ivan Hurt, Oct 11 2013
Also, union of odd primes (A065091) and the divisors of 4. Also, union of A008578 and 4. - Omar E. Pol, Nov 04 2013
Numbers k such that sigma(k!) is divisible by sigma((k-1)!). - Altug Alkan, Jul 18 2016

Crossrefs

Programs

  • Haskell
    a046022 n = a046022_list !! (n-1)
    a046022_list = [1..4] ++ drop 2 a000040_list
    -- Reinhard Zumkeller, Apr 06 2014
    
  • Maple
    A046022:=n-> `if`((-1)^n*floor(numtheory[tau](n)*(-1)^n/2) = 1, n, NULL); seq(A046022(j), j=1..260); # Wesley Ivan Hurt, Oct 11 2013
  • Mathematica
    max = 0; a = {}; Do[m = FactorInteger[n]; w = Sum[m[[k]][[1]]*m[[k]][[2]], {k, 1, Length[m]}]; If[w > max, AppendTo[a, w]; max = w], {n, 1, 1000}]; a (* Artur Jasinski, Apr 06 2008 *)
  • PARI
    a(n)=if(n<6,n,prime(n-2)) \\ Charles R Greathouse IV, Apr 28 2015
    
  • Python
    from sympy import prime
    def A046022(n): return prime(n-2) if n>4 else n # Chai Wah Wu, Oct 17 2024

Formula

A141295(a(n)) = a(n). - Reinhard Zumkeller, Jun 23 2008
A018194(a(n)) = 1. - Reinhard Zumkeller, Mar 09 2012
A240471(a(n)) = 1. - Reinhard Zumkeller, Apr 06 2014

Extensions

Better description from Frank Ellermann, Jun 15 2001

A106315 Harmonic residue of n.

Original entry on oeis.org

0, 1, 2, 5, 4, 0, 6, 2, 1, 4, 10, 16, 12, 8, 12, 18, 16, 30, 18, 36, 20, 16, 22, 12, 13, 20, 28, 0, 28, 24, 30, 3, 36, 28, 44, 51, 36, 32, 44, 50, 40, 48, 42, 12, 36, 40, 46, 108, 33, 21, 60, 18, 52, 72, 4, 88, 68, 52, 58, 48, 60, 56, 66, 67, 8, 96, 66, 30, 84, 128, 70, 84, 72, 68, 78
Offset: 1

Views

Author

George J. Schaeffer (gschaeff(AT)andrew.cmu.edu), Apr 29 2005

Keywords

Comments

The harmonic residue is the remainder when n*d(n) is divided by sigma(n), where d(n) is the number of divisors of n and sigma(n) is the sum of the divisors of n. If n is perfect, the harmonic residue of n is 0.

Crossrefs

Cf. A106316, A106317, A001599 (positions of zeros).

Programs

  • Haskell
    a106315 n = n * a000005 n `mod` a000203 n -- Reinhard Zumkeller, Apr 06 2014
  • Maple
    A106315 := proc(n)
        modp(n*numtheory[tau](n),numtheory[sigma](n)) ;
    end proc:
    seq(A106315(n),n=1..100) ; # R. J. Mathar, Jan 25 2017
  • Mathematica
    HarmonicResidue[n_]=Mod[n*DivisorSigma[0, n], DivisorSigma[1, n]]; HarmonicResidue[ Range[ 80]]

Formula

a(n) = A038040(n) - A000203(n) * A240471(n) . - Reinhard Zumkeller, Apr 06 2014

Extensions

Mathematica program completed by Harvey P. Dale, Feb 29 2024
Showing 1-4 of 4 results.