cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A142959 Numbers k such that both (k!)^2 + k! + 1 and (k!)^2 + 1 are prime.

Original entry on oeis.org

1, 2, 3, 4, 76
Offset: 1

Views

Author

Lekraj Beedassy, Jul 13 2008

Keywords

Comments

For the numbers of digits of the associated primes, see A142960.
a(6) > 150000, because A46029(15) > 150000 and A46029(14) = 127162 is not a term here since (127162!)^2 + 127162! + 1 is divisible by 2049703. - Giovanni Resta, Aug 12 2025

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 76, pp 26, Ellipses, Paris 2008.

Crossrefs

Programs

  • Mathematica
    Select[Range[80],With[{c=#!},AllTrue[c^2+{c+1,1},PrimeQ]]&] (* Harvey P. Dale, Aug 11 2025 *)

Formula

A046029 INTERSECT A051856. - R. J. Mathar, Aug 08 2008

A258357 Numbers n such that cyclotomic polynomial value Phi(7,n!) is prime.

Original entry on oeis.org

0, 1, 2, 3, 13, 470, 2957
Offset: 1

Views

Author

Robert Price, May 27 2015

Keywords

Comments

Except for the values 0,1,2 and 3, terms correspond to probable primes.
a(8) > 6502.
Also, numbers n such that n! belongs to A100330. - Michel Marcus, May 30 2015

Examples

			3 is in the sequence because Phi(7,3!) = 1 + 6 + 6^2 + 6^3 + 6^4 + 6^5 + 6^6 = 55987 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 6502], PrimeQ[Cyclotomic[7, #!]] &]

A301346 Largest prime factor of A020549(n) = (n!)^2 + 1.

Original entry on oeis.org

2, 2, 5, 37, 577, 14401, 39877, 251501, 95629553, 131681894401, 13168189440001, 1593350922240001, 2271708245569901, 38775788043632640001, 2404319663572286441, 1272170577304043929, 2938007628841577533852349, 13980942259426143240713449, 1107848353183710355135404972973, 20831587158104092560535861261
Offset: 0

Views

Author

Seiichi Manyama, Mar 19 2018

Keywords

Comments

a(n) = A020549(n) for n in A046029.

Crossrefs

Programs

  • Maple
    a:= n-> max(numtheory[factorset](n!^2+1)):
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 19 2018
  • PARI
    a(n) = vecmax(factor(n!^2 + 1)[,1]); \\ Daniel Suteu, Jun 10 2022

Formula

a(n) = A006530(A020549(n)). - Altug Alkan, Mar 19 2018

A301431 Least nonnegative integer k such that (n!)^2 + n + k + 1 is prime.

Original entry on oeis.org

0, 0, 0, 1, 6, 1, 4, 3, 4, 13, 6, 1, 46, 9, 16, 7, 24, 41, 48, 9, 10, 81, 366, 35, 82, 21, 100, 39, 152, 71, 66, 377, 4, 27, 8, 25, 10, 225, 70, 13, 158, 125, 294, 3, 86, 81, 26, 133, 208, 141, 50, 31, 26, 127, 112, 173, 802, 363, 374, 47, 910, 437, 74, 213, 1044, 13, 1962, 41, 160, 169, 296, 29
Offset: 0

Views

Author

Seiichi Manyama, Mar 21 2018

Keywords

Comments

The (n-1) consecutive numbers (n)^2! + 2, ..., (n!)^2 + n (for n >= 2) are not prime powers (cf. A246655).

Examples

			a(0)=0 because (0!)^2 + 0 + 0 + 1 =   2 is prime.
a(1)=0 because (1!)^2 + 1 + 0 + 1 =   3 is prime.
a(2)=0 because (2!)^2 + 2 + 0 + 1 =   7 is prime.
a(3)=1 because (3!)^2 + 3 + 1 + 1 =  41 is prime and 40 is not prime.
a(4)=6 because (4!)^2 + 4 + 6 + 1 = 587 is prime and 581, 582, ... , 586 are not prime.
		

Crossrefs

Programs

  • PARI
    a(n) = apply(x->(nextprime(x)-x), (n!)^2+n+1); \\ Altug Alkan, Mar 21 2018

A051857 Numbers n such that (n!)^2-n!+1 is prime.

Original entry on oeis.org

2, 3, 5, 7, 38, 2319, 2996, 3321, 3892
Offset: 1

Views

Author

Andrew Walker (ajw01(AT)uow.edu.au), Dec 13 1999

Keywords

Comments

a(1)-a(9) are verified primes using BLS option in pfgw. - Robert Price, Aug 24 2014
a(10) > 15000. - Robert Price, Aug 24 2014

Crossrefs

Programs

  • PARI
    isok(n) = isprime((n!)^2-n!+1); \\ Michel Marcus, Aug 26 2013

Extensions

a(7)-a(9) from Robert Price, Aug 24 2014

A121931 Numbers k such that (k!)^8 + 1 is prime.

Original entry on oeis.org

0, 1, 2, 58, 75, 347
Offset: 1

Views

Author

Alexander Adamchuk, Sep 10 2006

Keywords

Comments

Corresponding primes of the form (k!)^8 + 1 are {2,2,257,...}.
a(7) > 7000. - Robert Price, Aug 26 2014

Crossrefs

Programs

  • Mathematica
    Do[f=(n!)^8+1;If[PrimeQ[f],Print[{n,f}]],{n,1,75}]

Extensions

a(6) from Ryan Propper, Jan 03 2008

A123210 Numbers k such that (k!)^3 + (k!)^2 + 1 is prime.

Original entry on oeis.org

0, 1, 2, 4, 5, 7, 14, 41, 44, 51, 54, 161, 1379
Offset: 1

Views

Author

Jonathan Vos Post, Oct 05 2006

Keywords

Comments

Analogous to A046029 Numbers k such that (k!)^2 + 1 is prime.
a(14) > 10^4. - Robert Price, Aug 06 2014

Examples

			a(7) = 14 because (14!)^3+(14!)^2+1 = 662559760556747835222526525440001 is prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..160]|IsPrime((Factorial(n)^3)+(Factorial(n)^2)+1)]; // Vincenzo Librandi, Dec 22 2010
  • Mathematica
    Select[Range[200], PrimeQ[#!^3 + #!^2 + 1] &]

Extensions

a(8)-a(11) from Vincenzo Librandi, Dec 22 2010
a(13) from Robert Price, Aug 06 2014

A258355 Numbers n such that cyclotomic polynomial value Phi(9,n!) is prime.

Original entry on oeis.org

0, 1, 2, 98, 775
Offset: 1

Views

Author

Robert Price, May 27 2015

Keywords

Comments

All values correspond to certified primes.
a(6) > 5944.

Examples

			2 is in the sequence because Phi(9,2!) = 1 + 2^3 + 2^6 = 73 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 5944], PrimeQ[Cyclotomic[9, #!]] &]

A258356 Numbers n such that cyclotomic polynomial value Phi(10,n!) is prime.

Original entry on oeis.org

2, 36, 101, 107, 267, 316
Offset: 1

Views

Author

Robert Price, May 27 2015

Keywords

Comments

All values except 2 are probable primes.
a(7) > 7560.
That is, numbers n such that n! belongs to A246392. - Michel Marcus, May 30 2015

Examples

			2 is in the sequence because Phi(10,2!) = 1 - 2 + 2^2 - 2^3 + 2^4 = 11 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 7560], PrimeQ[Cyclotomic[10, #!]] &]
Previous Showing 11-19 of 19 results.