A091538 Triangle built from m-primes as columns.
1, 0, 2, 0, 3, 4, 0, 5, 6, 8, 0, 7, 9, 12, 16, 0, 11, 10, 18, 24, 32, 0, 13, 14, 20, 36, 48, 64, 0, 17, 15, 27, 40, 72, 96, 128, 0, 19, 21, 28, 54, 80, 144, 192, 256, 0, 23, 22, 30, 56, 108, 160, 288, 384, 512, 0, 29, 25, 42, 60, 112, 216, 320, 576, 768, 1024
Offset: 0
Examples
From _Michael De Vlieger_, May 24 2017: (Start) Chart a(n,m) read by antidiagonals: n | m -> ------------------------------------------------ 0 | 1 0 0 0 0 0 0 ... (A000007) 1 | 2 3 5 7 11 13 17 (A000040) 2 | 4 6 9 10 14 15 21 (A001358) 3 | 8 12 18 20 27 28 30 (A014612) 4 | 16 24 36 40 54 56 60 (A014613) 5 | 32 48 72 80 108 112 120 (A014614) 6 | 64 96 144 160 216 224 240 (A046306) 7 | 128 192 288 320 432 448 480 (A046308) 8 | 256 384 576 640 864 896 960 (A046310) ... Triangle begins: 0 | 1 1 | 0 2 2 | 0 3 4 3 | 0 5 6 8 4 | 0 7 9 12 16 5 | 0 11 10 18 24 32 6 | 0 13 14 20 36 48 64 7 | 0 17 15 27 40 72 96 128 8 | 0 19 21 28 54 80 144 192 256 ... (End)
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..10000
- Wolfdieter Lang, First 11 rows.
Crossrefs
Programs
-
Mathematica
With[{nn = 11}, Function[s, Function[t, Table[Function[m, If[m == 1, Boole[k == 1], t[[m, k]]]][n - k + 1], {n, nn}, {k, n, 1, -1}]]@ Map[Position[s, #][[All, 1]] &, Range[0, nn]]]@ PrimeOmega@ Range[2^nn]] (* or *) a = {1}; Do[Block[{r = {Prime@ n}}, Do[AppendTo[r, SelectFirst[ Range[a[[-(n - i)]] + 1, 2^n], PrimeOmega@ # == i &]], {i, 2, n - 1}]; a = Join[a, {0}, If[n == 1, {}, r], {2^n}]], {n, 11}]; a (* Michael De Vlieger, May 24 2017 *)
-
Python
from math import isqrt, comb, prod from sympy import prime, primerange, integer_nthroot, primepi def A091538(n): a = (m:=isqrt(k:=n+1<<1))+(k>m*(m+1)) r = n-comb(a,2) w = a-r if r==0: return int(w==1) if r==1: return prime(w) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) def f(x): return int(w+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,r))) return bisection(f,w,w) # Chai Wah Wu, Jun 11 2025
Formula
For n>=m>=1: a(n, m)= (n-m+1)-th member in the strictly monotonically increasing sequence of numbers N satisfying: N=product(p(k)^(e_k), k=1..) with p(k) := A000040(k) (k-th prime) such that sum(e_k, k=1..) = m, where the e_k are nonnegative. if m=0 : a(n, 0)=1 if n=0 else 0. If n
A120038 Number of 7-almost primes 7ap such that 2^n < 7ap <= 2^(n+1).
0, 0, 0, 0, 0, 0, 1, 1, 5, 8, 22, 46, 99, 224, 461, 1013, 2093, 4459, 9388, 19603, 40946, 85087, 177200, 366248, 758686, 1565038, 3226717, 6641105, 13648299, 28018956, 57445770, 117667693, 240751326, 492172466, 1005221914, 2051468099
Offset: 0
Keywords
Comments
The partial sum equals the number of Pi_7(2^n).
Examples
(2^7, 2^8] there is one semiprime, namely 192. 128 was counted in the previous entry.
Crossrefs
Programs
-
Mathematica
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *) t = Table[AlmostPrimePi[7, 2^n], {n, 0, 30}]; Rest@t - Most@t
A113739 Pierpont 7-almost primes. 7-almost primes of form (2^K)*(3^L)+1.
339738625, 10460353204, 83682825625, 669462604993, 2641807540225, 3761479876609, 7625597484988, 18075490334785, 35184372088833, 481469424205825, 488038239039169, 570630428688385, 1125899906842625
Offset: 1
Keywords
Examples
a(1) = 339738625 = (2^22)*(3^4)+1 = 5 * 5 * 5 * 17 * 29 * 37 * 149. a(2) = 10460353204 = (2^0)*(3^21)+1 = 2 * 2 * 7 * 7 * 43 * 547 * 2269. a(3) = 83682825625 = (2^3)*(3^21)+1 = 5 * 5 * 5 * 5 * 7 * 631 * 30313. a(4) = 669462604993 = (2^6)*(3^21)+1 = 7 * 13 * 19 * 31 * 67 * 277 * 673. a(7) = 7625597484988 = (2^0)*(3^27)+1 = 2 * 2 * 7 * 19 * 37 * 19441 * 19927. a(9) = 35184372088833 = (2^45)*(3^0)+1 = 3 * 3 * 3 * 11 * 19 * 331 * 18837001. a(13) = 1125899906842625 = (2^50)*(3^0)+1 = 5 * 5 * 5 * 41 * 101 * 8101 * 268501. a(16) = 5559060566555524 = (2^0)*(3^33)+1 = 2 * 2 * 7 * 67 * 661 * 25411 * 176419. a(28) = 9223372036854775809 = (2^63)*(3^0)+1 = 3 * 3 * 3 * 19 * 43 * 5419 * 77158673929.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..716
- Eric Weisstein's World of Mathematics, Pierpont Prime
- Eric Weisstein's World of Mathematics, Almost Prime
Crossrefs
A005109 gives the Pierpont primes, which are primes of the form (2^K)*(3^L)+1.
A113432 gives the Pierpont semiprimes, 2-almost primes of the form (2^K)*(3^L)+1.
A112797 gives the Pierpont 3-almost primes, of the form (2^K)*(3^L)+1.
A111344 gives the Pierpont 4-almost primes, of the form (2^K)*(3^L)+1.
A111345 gives the Pierpont 5-almost primes, of the form (2^K)*(3^L)+1.
A111346 gives the Pierpont 6-almost primes, of the form (2^K)*(3^L)+1.
A113740 gives the Pierpont 8-almost primes, of the form (2^K)*(3^L)+1.
A113741 gives the Pierpont 9-almost primes, of the form (2^K)*(3^L)+1.
Programs
-
PARI
list(lim)=my(v=List(), L=lim\1-1); for(e=0, logint(L, 3), my(t=3^e); while(t<=L, if(bigomega(t+1)==7, listput(v, t+1)); t*=2)); Set(v) \\ Charles R Greathouse IV, Feb 01 2017
Formula
a(n) is in this sequence iff there exist nonnegative integers K and L such that Omega((2^K)*(3^L)+1) = 7.
Extensions
Extended by Ray Chandler, Nov 08 2005
A046333 Palindromes with exactly 7 prime factors (counted with multiplicity).
27872, 27972, 29592, 42224, 57375, 63336, 63536, 65056, 67176, 80208, 80608, 80808, 82128, 82728, 83538, 84048, 84348, 86768, 88088, 88288, 232232, 238832, 259952, 279972, 401104, 409904, 414414, 420024, 424424, 441144, 443344, 444444
Offset: 1
Links
- John Cerkan, Table of n, a(n) for n = 1..10000
A125149 a(n) is the least k such that the n-almost prime count is positive and equal to the (n-1)-almost prime count. a(0) = 1.
1, 2, 10, 15495, 151165506066
Offset: 0
Comments
Unlike any of the prime number races in which any particular form may lead or trail, this sequence demonstrates that although the count of numbers having k prime factors begins by trailing the count for k-1 prime factors, eventually they exchange positions in the race. This can be seen by looking at A126279 or A126280.
The fundamental theorem of arithmetic, or unique factorization theorem, states that every natural number greater than 1 either is itself a prime number, or can be written as a unique product of prime numbers. It had a proof sketched by Euclid, then corrected and completed in "Disquisitiones Arithmeticae" [Carl Friedrich Gauss, 1801]. It fails in many rings of algebraic integers [Ernst Kummer, 1843], a discovery initiating algebraic number theory. Counting the elements in the unique product of prime numbers classifies natural numbers into primes, semiprimes, 3-almost primes and so on. This sequence quantifies a previously undescribed structure to that classification.
We took the first k where the two relevant counts are the same. If instead we took the least k such that the n-almost prime count from k onwards exceeds the (n-1)-almost prime count, the sequence would begin: 3, 34, 15530, ... [see A180126].
The prime count and the semiprime count are identical for 1, 10, 15, 16, 22, 25, 29, 30, 33.
The semiprime count and the 3-almost prime count are identical for 1, 2, 3, 15495, 15496, 15497, 15498, 15508, 15524, 15525, 15529.
The numbers of 3-almost primes and 4-almost primes are equal at 151165506066 and 731 larger numbers, the last one being 151165607041. See A180126. - T. D. Noe, Aug 11 2010
Landau's asymptotic formula suggests that a(n) is about exp(exp(n-1)). - Charles R Greathouse IV, Mar 14 2011
Examples
a(1) = 2 since 1 has no prime factors and 2 has one prime factor, therefore prime factor counts of 0 and 1 occur equally often in the first 2 integers. a(2) = 10 since there are 4 primes {2, 3, 5 & 7} and 4 semiprimes {4, 6, 9 & 10} less than or equal to 10. a(4) = 151165506066 since there are 32437255807 4-almost primes and 3-almost primes <= a(4).
Links
- Andrew Granville and Greg Martin, Prime Number Races, arXiv:math/0408319 [math.NT], Aug 24 2004.
- Eric Weisstein's World of Mathematics, Fundamental Theorem of Arithmetic.
- Eric Weisstein's World of Mathematics, Modular Prime Counting Function.
- Eric Weisstein's World of Mathematics, Prime Factor.
Crossrefs
Sequences listing r-almost primes, that is, k such that A001222(k) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20).
Cf. A180126.
Programs
-
Mathematica
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *) f[n_] := Block[{k = 2^n}, While[AlmostPrimePi[n, k] < AlmostPrimePi[n - 1, k], k++ ]; k];
Extensions
Changed 33 to 34 in a comment. - T. D. Noe, Aug 11 2010
Edited by Peter Munn, Dec 17 2022
A046307 Numbers that are divisible by at least 7 primes (counted with multiplicity).
128, 192, 256, 288, 320, 384, 432, 448, 480, 512, 576, 640, 648, 672, 704, 720, 768, 800, 832, 864, 896, 960, 972, 1008, 1024, 1056, 1080, 1088, 1120, 1152, 1200, 1216, 1248, 1280, 1296, 1344, 1408, 1440, 1458, 1472, 1512, 1536, 1568, 1584, 1600, 1620
Offset: 1
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A046308.
Programs
-
Mathematica
Select[Range[2000],PrimeOmega[#]>6&] (* Harvey P. Dale, Nov 16 2012 *)
-
PARI
is(n)=bigomega(n)>6 \\ Charles R Greathouse IV, Sep 17 2015
-
Python
from math import prod, isqrt from sympy import primerange, integer_nthroot, primepi def A046307(n): def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) def f(x): return int(n+primepi(x)+sum(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,i)) for i in range(2,7))) kmin, kmax = 1,2 while f(kmax) >= kmax: kmax <<= 1 while True: kmid = kmax+kmin>>1 if f(kmid) < kmid: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break return kmax # Chai Wah Wu, Aug 23 2024
Formula
Product p_i^e_i with Sum e_i >= 7.
A046320 Odd numbers divisible by exactly 7 primes (counted with multiplicity).
2187, 3645, 5103, 6075, 8019, 8505, 9477, 10125, 11907, 12393, 13365, 13851, 14175, 15795, 16767, 16875, 18711, 19845, 20655, 21141, 22113, 22275, 22599, 23085, 23625, 26325, 26973, 27783, 27945, 28125, 28917, 29403, 29889, 31185
Offset: 1
Keywords
Links
- John Cerkan, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A046308.
A101696 a(n) = sum(i=1,n)(i-th i-almost prime). Cumulative sums of A101695.
2, 8, 26, 66, 174, 398, 878, 2174, 4862, 10494, 22014, 45054, 98302, 222718, 480766, 1021438, 2127358, 4355582, 8943102, 18773502, 38696446, 79590910, 175142398, 368080382, 764442110, 1586525694, 3247470078, 6644856318, 13489960446
Offset: 1
Keywords
Comments
It seems that this sum can never be a prime after a(1) = 2, since the n-th n-almost prime is always even. The number of prime factors (with multiplicity) of a(n) is 1, 3, 2, 3, 3, 2, 2, 2, 4, 5, 4, 4, 3, 3, 5, 4, 3, 4, 7, 4, 2, 5, 5, 2, 3, 7, 4, 3, 4.
This is the diagonalization of the set of sequences {j-almost prime(k)}. The cumulative sums of this sequence are in A101696. a(1)=2 is prime. a(2)=8 is a 3-almost prime. a(3)=26 is a semiprime. a(4)=66 is a 3-almost prime. a(5)= 174 is a 3-almost prime. a(6)=398 is a semiprime. a(7)=878 is a semiprime. a(8)=2174 is a semiprime. a(9)=4862 is a 4-almost prime. a(10)=10494 is a 5-almost prime. a(11)=22014 is a 4-almost prime. a(12)=45054 is a 3-almost prime. a(13)=98302 is a 3-almost prime. a(14)=222718 is a 3-almost prime. a(15)=480766 is a 5-almost prime. a(16)=1021438 is a 4-almost prime. a(17)=2127358 is a 3-almost prime. a(18)=4355582 is a 4-almost prime. a(19)=8943102 is a 7-almost prime. a(20)=18773502 is a 4-almost prime. 21-almost numbers are not yet listed in the OEIS.
Examples
a(1) = first 1-almost prime = first prime = A000040(1) = 2. a(2) = 2 + 2nd 2-almost prime = 2 + A001358(2) = 2+ 6 = 8. a(3) = a(2) + 3rd 3-almost prime = 8+A014612(3) = 8+18 = 26. a(4) = a(3) + 4th 4-almost prime = 26+A014613(4) = 26+40 = 66. a(5) = a(4) + 5th 5-almost prime = 66+A014614(5) = 66+108=174. ... a(12) = a(11) + 12th 12-almost prime = 22014 + 23040 = 45054 (the first nontrivial palindrome in the sequence).
Links
- Eric Weisstein's World of Mathematics, Almost Prime.
Crossrefs
Formula
Extensions
Edited by N. J. A. Sloane, Jul 03 2008 at the suggestion of R. J. Mathar
A114635 Numbers k such that the k-th octagonal number is 7-almost prime.
24, 30, 32, 38, 48, 66, 72, 78, 90, 94, 104, 110, 112, 114, 120, 136, 140, 154, 164, 166, 168, 176, 180, 190, 204, 206, 208, 210, 220, 222, 228, 238, 248, 254, 276, 280, 284, 286, 290, 300, 306, 312, 326, 338, 344
Offset: 1
Comments
Examples
a(1) = 24 because OctagonalNumber(24) = Oct(24) = 24*(3*24-2) = 96 = 1680 = 2^4 * 3 * 5 * 7 has exactly 7 prime factors (four are all equally 2; factors need not be distinct). a(2) = 30 because Oct(30) = 30*(3*30-2) = 2640 = 2^4 * 3 * 5 * 11 is 7-almost prime. a(3) = 32 because Oct(32) = 32*(3*32-2) = 3008 = 2^6 * 47 is 7-almost prime.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harvey P. Dale)
- Eric Weisstein's World of Mathematics, Almost Prime.
- Eric Weisstein's World of Mathematics, Octagonal Number.
Programs
-
Mathematica
Select[Range[400],PrimeOmega[PolygonalNumber[8,#]]==7&] (* Harvey P. Dale, Aug 13 2021 *)
Formula
Numbers k such that k*(3*k-2) has exactly seven prime factors (with multiplicity).
Numbers k such that [(3*k-2)*(3*k-1)*(3*k)]/[(3*k-2)+(3*k-1)+(3*k)] is a term of A046308.
A114636 Numbers k such that the k-th octagonal number is 8-almost prime.
22, 70, 80, 84, 102, 108, 118, 126, 134, 160, 174, 184, 200, 230, 240, 250, 252, 262, 264, 272, 318, 330, 334, 336, 350, 368, 378, 400, 408, 420, 430, 434, 444, 450, 454, 459, 462, 464, 484, 494, 500, 502, 510, 518, 520, 522, 540, 560, 564, 566, 570, 574, 582
Offset: 1
Comments
Examples
a(1) = 22 because OctagonalNumber(22) = Oct(22) = 22*(3*22-2) = 1408 = 2^7 * 11 has exactly 8 prime factors (seven are all equally 2; factors need not be distinct). a(2) = 70 because Oct(70) = 70*(3*70-2) = 14560 = 2^5 * 5 * 7 * 13 is 8-almost prime. a(3) = 80 because Oct(80) = 80*(3*80-2) = 19040 = 2^5 * 5 * 7 * 17.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..2000 from Harvey P. Dale)
- Eric Weisstein's World of Mathematics, Almost Prime.
- Eric Weisstein's World of Mathematics, Octagonal Number.
Crossrefs
Programs
-
Mathematica
Select[Range[400],PrimeOmega[PolygonalNumber[8,#]]==8&] (* Harvey P. Dale, Aug 31 2020 *)
Formula
Numbers k such that k*(3*k-2) has exactly eight prime factors (with multiplicity).
Numbers k such that [(3*k-2)*(3*k-1)*(3*k)]/[(3*k-2)+(3*k-1)+(3*k)] is a term of A046310.
Comments