cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A001358 Semiprimes (or biprimes): products of two primes.

Original entry on oeis.org

4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, 35, 38, 39, 46, 49, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 121, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 169, 177, 178, 183, 185, 187
Offset: 1

Views

Author

Keywords

Comments

Numbers of the form p*q where p and q are primes, not necessarily distinct.
These numbers are sometimes called semiprimes or 2-almost primes.
Numbers n such that Omega(n) = 2 where Omega(n) = A001222(n) is the sum of the exponents in the prime decomposition of n.
Complement of A100959; A064911(a(n)) = 1. - Reinhard Zumkeller, Nov 22 2004
The graph of this sequence appears to be a straight line with slope 4. However, the asymptotic formula shows that the linearity is an illusion and in fact a(n)/n ~ log(n)/log(log(n)) goes to infinity. See also the graph of A066265 = number of semiprimes < 10^n.
For numbers between 33 and 15495, semiprimes are more plentiful than any other k-almost prime. See A125149.
Numbers that are divisible by exactly 2 prime powers (not including 1). - Jason Kimberley, Oct 02 2011
The (disjoint) union of A006881 and A001248. - Jason Kimberley, Nov 11 2015
An equivalent definition of this sequence is a'(n) = smallest composite number which is not divided by any smaller composite number a'(1),...,a'(n-1). - Meir-Simchah Panzer, Jun 22 2016
The above characterization can be simplified to "Composite numbers not divisible by a smaller term." This shows that this is the equivalent of primes computed via Eratosthenes's sieve, but starting with the set of composite numbers (i.e., complement of 1 union primes) instead of all positive integers > 1. It's easy to see that iterating the method (using Eratosthenes's sieve each time on the remaining numbers, complement of the previously computed set) yields numbers with bigomega = k for k = 0, 1, 2, 3, ..., i.e., {1}, A000040, this, A014612, etc. - M. F. Hasler, Apr 24 2019
For all n except n = 2, a(n) is a deficient number. - Amrit Awasthi, Sep 10 2024
It is reasonable to assume that the "comforting numbers" which John T. Williams found in Chapter 3 of Milne's book "The House at Pooh Corner" are these semiprimes. Winnie-the-Pooh wonders whether he has 14 or 15 honey pots and concludes: "It's sort of comforting." To arrange a semiprime number of honey pots in a rectangular way, let's say on a shelf, with the larger divisor parallel to the wall, there is only one solution and this is for a simple mind like Winnie-the-Pooh comforting. - Ruediger Jehn, Dec 12 2024

Examples

			From _Gus Wiseman_, May 27 2021: (Start)
The sequence of terms together with their prime factors begins:
   4 = 2*2     46 = 2*23     91 = 7*13    141 = 3*47
   6 = 2*3     49 = 7*7      93 = 3*31    142 = 2*71
   9 = 3*3     51 = 3*17     94 = 2*47    143 = 11*13
  10 = 2*5     55 = 5*11     95 = 5*19    145 = 5*29
  14 = 2*7     57 = 3*19    106 = 2*53    146 = 2*73
  15 = 3*5     58 = 2*29    111 = 3*37    155 = 5*31
  21 = 3*7     62 = 2*31    115 = 5*23    158 = 2*79
  22 = 2*11    65 = 5*13    118 = 2*59    159 = 3*53
  25 = 5*5     69 = 3*23    119 = 7*17    161 = 7*23
  26 = 2*13    74 = 2*37    121 = 11*11   166 = 2*83
  33 = 3*11    77 = 7*11    122 = 2*61    169 = 13*13
  34 = 2*17    82 = 2*41    123 = 3*41    177 = 3*59
  35 = 5*7     85 = 5*17    129 = 3*43    178 = 2*89
  38 = 2*19    86 = 2*43    133 = 7*19    183 = 3*61
  39 = 3*13    87 = 3*29    134 = 2*67    185 = 5*37
(End)
		

References

  • Archimedeans Problems Drive, Eureka, 17 (1954), 8.
  • Raymond Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; Chapter II, Problem 60.
  • Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Vol. 1, Teubner, Leipzig; third edition: Chelsea, New York (1974). See p. 211.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • John T. Williams, Pooh and the Philosophers, Dutton Books, 1995.

Crossrefs

Cf. A064911 (characteristic function).
Cf. A048623, A048639, A000040 (primes), A014612 (products of 3 primes), A014613, A014614, A072000 ("pi" for semiprimes), A065516 (first differences).
Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r=1), this sequence (r=2), A014612 (r=3), A014613 (r=4), A014614 (r=5), A046306 (r=6), A046308 (r=7), A046310 (r=8), A046312 (r=9), A046314 (r=10), A069272 (r=11), A069273 (r=12), A069274 (r=13), A069275 (r=14), A069276 (r=15), A069277 (r=16), A069278 (r=17), A069279 (r=18), A069280 (r=19), A069281 (r=20).
These are the Heinz numbers of length-2 partitions, counted by A004526.
The squarefree case is A006881 with odd/even terms A046388/A100484 (except 4).
Including primes gives A037143.
The odd/even terms are A046315/A100484.
Partial sums are A062198.
The prime factors are A084126/A084127.
Grouping by greater factor gives A087112.
The product/sum/difference of prime indices is A087794/A176504/A176506.
Positions of even/odd terms are A115392/A289182.
The terms with relatively prime/divisible prime indices are A300912/A318990.
Factorizations using these terms are counted by A320655.
The prime indices are A338898/A338912/A338913.
Grouping by weight (sum of prime indices) gives A338904, with row sums A024697.
The terms with even/odd weight are A338906/A338907.
The terms with odd/even prime indices are A338910/A338911.
The least/greatest term of weight n is A339114/A339115.

Programs

  • Haskell
    a001358 n = a001358_list !! (n-1)
    a001358_list = filter ((== 2) . a001222) [1..]
    
  • Magma
    [n: n in [2..200] | &+[d[2]: d in Factorization(n)] eq 2]; // Bruno Berselli, Sep 09 2015
    
  • Maple
    A001358 := proc(n) option remember; local a; if n = 1 then 4; else for a from procname(n-1)+1 do if numtheory[bigomega](a) = 2 then return a; end if; end do: end if; end proc:
    seq(A001358(n), n=1..120) ; # R. J. Mathar, Aug 12 2010
  • Mathematica
    Select[Range[200], Plus@@Last/@FactorInteger[#] == 2 &] (* Zak Seidov, Jun 14 2005 *)
    Select[Range[200], PrimeOmega[#]==2&] (* Harvey P. Dale, Jul 17 2011 *)
  • PARI
    select( isA001358(n)={bigomega(n)==2}, [1..199]) \\ M. F. Hasler, Apr 09 2008; added select() Apr 24 2019
    
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2, sqrt(lim), t=p;forprime(q=p, lim\t, listput(v,t*q))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Sep 11 2011
    
  • PARI
    A1358=List(4); A001358(n)={while(#A1358M. F. Hasler, Apr 24 2019
    
  • Python
    from sympy import factorint
    def ok(n): return sum(factorint(n).values()) == 2
    print([k for k in range(1, 190) if ok(k)]) # Michael S. Branicky, Apr 30 2022
    
  • Python
    from math import isqrt
    from sympy import primepi, prime
    def A001358(n):
        def f(x): return int(n+x-sum(primepi(x//prime(k))-k+1 for k in range(1, primepi(isqrt(x))+1)))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Jul 23 2024

Formula

a(n) ~ n*log(n)/log(log(n)) as n -> infinity [Landau, p. 211], [Ayoub].
Recurrence: a(1) = 4; for n > 1, a(n) = smallest composite number which is not a multiple of any of the previous terms. - Amarnath Murthy, Nov 10 2002
A174956(a(n)) = n. - Reinhard Zumkeller, Apr 03 2010
a(n) = A088707(n) - 1. - Reinhard Zumkeller, Feb 20 2012
Sum_{n>=1} 1/a(n)^s = (1/2)*(P(s)^2 + P(2*s)), where P is the prime zeta function. - Enrique Pérez Herrero, Jun 24 2012
sigma(a(n)) + phi(a(n)) - mu(a(n)) = 2*a(n) + 1. mu(a(n)) = ceiling(sqrt(a(n))) - floor(sqrt(a(n))). - Wesley Ivan Hurt, May 21 2013
mu(a(n)) = -Omega(a(n)) + omega(a(n)) + 1, where mu is the Moebius function (A008683), Omega is the count of prime factors with repetition, and omega is the count of distinct prime factors. - Alonso del Arte, May 09 2014
a(n) = A078840(2,n). - R. J. Mathar, Jan 30 2019
A100484 UNION A046315. - R. J. Mathar, Apr 19 2023
Conjecture: a(n)/n ~ (log(n)/log(log(n)))*(1-(M/log(log(n)))) as n -> oo, where M is the Mertens's constant (A077761). - Alain Rocchelli, Feb 02 2025

Extensions

More terms from James Sellers, Aug 22 2000

A072114 Number of 3-almost primes (A014612) <= n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 9, 10, 10, 10, 10, 10, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, 16, 16, 16, 17, 18, 18, 19, 19, 19, 19, 19, 19, 19
Offset: 0

Views

Author

Benoit Cloitre, Jun 19 2002

Keywords

Comments

Number of k <= n such that bigomega(k) = 3.
Let A be a positive integer then card{ x <= n : bigomega(x) = A } ~ (n/Log(n))*Log(Log(n))^(A-1)/(A-1)!. For which n, card{ x <= n : bigomega(x) = 3 } >= card{ x <= n : bigomega(x) = 2 } ?
15530 is the first number for which there are more 3-almost primes than 2-almost primes. See A125149.

References

  • E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, vol. 1, Teubner, Leipzig; third edition : Chelsea, New York (1974).
  • G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, p. 203, Publications de l'Institut Cartan, 1990.

Crossrefs

Partial sums of A101605.
Cf. A125149.

Programs

  • Mathematica
    Table[Sum[KroneckerDelta[PrimeOmega[i], 3], {i, n}], {n, 0, 50}] (* Wesley Ivan Hurt, Oct 07 2014 *)
  • PARI
    for(n=1,100,print1(sum(i=1,n,bigomega(i)==3),","))
    
  • PARI
    a(n)=my(j,s);forprime(p=2,(n+.5)^(1/3),j=primepi(p)-2;forprime(q=p,sqrtint(n\p),s+=primepi(n\(p*q))-j++));s \\ Charles R Greathouse IV, Mar 21 2012
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A072114(n): return int(sum(primepi(n//(k*m))-b for a,k in enumerate(primerange(integer_nthroot(n,3)[0]+1)) for b,m in enumerate(primerange(k,isqrt(n//k)+1),a))) # Chai Wah Wu, Aug 17 2024

Formula

a(n) = card{ x <= n : bigomega(x) = 3 }, asymptotically : a(n) ~ (n/log(n))*log(log(n))^2/2 [Landau, p. 211].

A180126 a(n) is the least k such that for numbers x >= k, PrimePi(n,x) > PrimePi(n-1,x), where PrimePi(n,x) is the number of n-almost-primes <= x.

Original entry on oeis.org

3, 34, 15530, 151165607042
Offset: 1

Views

Author

T. D. Noe, Aug 11 2010

Keywords

Comments

Note that a(n) is an n-almost-prime. An n-almost-prime is a number having exactly n prime factors (counted with multiplicity). So 1 is the only 0-almost-prime; 1-almost-primes are the usual prime numbers; 2-almost-primes are also called semiprimes. The first three terms are mentioned in A125149.
For 2 <= n <= 4, the values for a(n)/a(n-1) (11.3, 456.8, 9733780.2) are each a little larger than A281889(n), "the median n-th least prime factor of the integers". - Peter Munn, Jan 04 2023

Crossrefs

Extensions

Name edited by Peter Munn, Jan 04 2023

A125288 a(n) = least integer k such that for all integers m greater than k, 2*Pi(n,m) is greater than Pi(n,2*m).

Original entry on oeis.org

10, 297, 49650, 180701087317
Offset: 1

Views

Author

Keywords

Comments

Pi(n, m) is the number of integers <= m that have n prime factors counting multiplicity, also known as n-almost-primes (A078840).

Examples

			a(1) = 10 since the first term relates to 1-almost-primes, which are the primes themselves; and there are 4 primes <= 10, and 2*4 = 8 primes <= 2*10 = 20; but for m = 11 and all larger integers, the number of primes <= 2*m is less than twice the number of primes <= m. - _Peter Munn_, Dec 23 2022
		

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[ PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *)

Extensions

a(4) from Donovan Johnson, Nov 13 2010
Edited by Peter Munn, Jan 05 2023

A161170 Least integer k such that the n-almost prime count is equal to the prime count.

Original entry on oeis.org

10, 125, 1809, 37820, 2722768, 1037849736, 4204496515890, 476649763963226416
Offset: 2

Views

Author

Andy Martin, Jun 04 2009

Keywords

Comments

Related to sequence A125149, but we compare the prime count to the semiprime count, then the product-of-three-primes count, and so on.
We start with a the number two, and a prime count of 1.
Then the prime count and semiprime count are first identical when k = 10, the prime count is 4 ({2, 3, 5, 7}) and the semiprime count is also 4 ({4, 6, 9, 10}).
Next, when k = 125 the prime count of 30 and product-of-three-primes count of 30 are first identical.
Based on the write up for A125149 and examination of the factor counts as k increases, we believe this sequence is infinite, but have not proved this.

Examples

			a(2) = 10 since there are now 4 primes ({2, 3, 5, 7}) and 4 semiprimes ({4, 6, 9, 10}) <= 10.
a(3) = 125 with 30 primes and 30 products of 3 primes.
a(4) = 1809 with 279 primes and 279 products of 4 primes.
a(5) = 37820 with 4000 primes and 4000 products of 5 primes.
a(6) = 2722768 with 198183 primes and 198183 products of 6 primes.
a(7) = 1037849736 with 52672391 primes and 52672391 products of 7 primes.
a(8) = 4204496515890 with 150007470826 primes and 150007470826 products of 8 primes.
a(9) = 476649763963226416 with 12012658440940682 primes and 12012658440940682 products of 9 primes.
		

Crossrefs

Cf. A125149.

Programs

  • Perl
    use ntheory ":all"; my($k,@S)=(0,map{0}1..20); forfactored { $S[@]++; while ($S[1] == $S[$k]) { print "$k $\n" if $k>1; $k++; } } 3e6; # Dana Jacobsen, Jan 18 2019
  • Ruby
    # A slow program to generate sequence
    # Faster C code is available by request
    # Tallies number of primes, semiprimes, trieneprimes ...
    tally = Hash.new { |h,k| h[k] = 0}
    # Returns number of factors of num
    def factors(num)
    (2..(Math.sqrt(num).to_i)).each{ |i|
    return factors(num/i) + 1 if num % i == 0
    }
    1
    end
    # Testing number of primes against composites with num_factors
    num_factors = 2
    2.upto( 1.0/0.0 ) { |i|
    tally[factors(i)] +=1
    if tally[1] == tally[num_factors]
    puts "k: #{i} Primes: #{tally[1]} Composites with #{num_factors} factors: #{tally[num_factors]}"
    num_factors += 1
    end
    }
    

Extensions

Edited example and a(8) from Donovan Johnson, Mar 10 2010
a(9) from Henri Lifchitz, Mar 17 2025
Showing 1-5 of 5 results.