cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A144766 Terms in A144719 that are themselves decimal palindromes.

Original entry on oeis.org

121, 10001, 10201, 36763, 1226221, 7673767, 12467976421, 1030507050301, 1120237320211, 1225559555221, 1234469644321, 1334459544331, 100330272033001, 100827848728001, 101222252222101, 103023070320301, 121363494363121, 134312696213431, 10022212521222001
Offset: 1

Views

Author

Reikku Kulon, Sep 20 2008

Keywords

Comments

Presumed infinite, but it is difficult to find more terms.
The earlier claim that this sequence is a subsequence of A046450 was incorrect, as the counterexample of 7673767 =97*79111 shows. The reason is that A046450 checks only concatenations in the natural order of the prime factors, but this sequence here allows for both orders, 97//79111 as well as 79111//97, to be palindromic. - R. J. Mathar, Jan 22 2009
3*10^14 < a(19) <= 10022212521222001. - Donovan Johnson, Dec 08 2010

Examples

			10001 = 73 * 137; 73137 is a palindrome.
		

Crossrefs

Formula

Subsequence of (A144719 INTERSECT A046328). - R. J. Mathar, Jan 22 2009

Extensions

a(7)-a(18) from Donovan Johnson, Dec 08 2010
a(19) from Giovanni Resta, Aug 31 2018

A174924 Semiprimes sp(k) = q * r such that sum of digits of sp(k) equals sum of digits of the semiprime index k.

Original entry on oeis.org

14, 15, 55, 121, 122, 123, 214, 215, 265, 287, 407, 481, 482, 535, 667, 813, 851, 901, 951, 1119, 1149, 1174, 1537, 1538, 1639, 1681, 1961, 2059, 2117, 2165, 2209, 2245, 2246, 2386, 2419, 2458, 2501, 2513, 2537, 2603, 2629, 2641, 2642, 2643, 2807, 2845
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Apr 02 2010

Keywords

Comments

Numbers of the form q * r where q and r are primes, not necessarily distinct.
These numbers are also called semiprimes or 2-almost primes.
For primes with such a property see A033548

Examples

			sp(5) = 14 = 2 * 7 is the 5th semiprime, sum of digits sod(14) = 1+4 = 5, 1st term
sp(6) = 15 = 3 * 5 is the 6th semiprime, sum of digits sod(15) = 1+5 = 6. 2nd term
sp(40) = 121 = 11^2 is the 40th semiprime, sum of digits sod(121) = 1+2+1 = 4, 4th term
Additionally for the prime based (q=r=11) square 121: sod(q) + sod(r) = 2 * sod(11) = 4
The first 110 such semiprimes:
14, 15, 55, 121, 122, 123, 214, 215, 265, 287, 407, 481, 482, 535, 667, 813, 851, 901, 951, 1119,
1149, 1174, 1537, 1538, 1639, 1681, 1961, 2059, 2117, 2165, 2209, 2245, 2246, 2386, 2419,
2458, 2501, 2513, 2537, 2603, 2629, 2641, 2642, 2643, 2807, 2845, 2846, 2858, 2859, 2921,
3158, 3205, 3218, 3427, 3439, 4322, 4333, 4367, 4661, 4713, 4714, 4735, 4811, 5221, 5317,
5318, 5615, 5707, 5753, 6009, 6022, 6023, 6046, 6081, 6082, 6117, 6193, 6283, 6371, 6411,
6423, 6514, 6515, 6527, 6541, 6542, 6593, 6635, 6649, 6683, 6694, 6905, 7251, 7291, 7363,
7387, 8023, 8102, 8153, 8203, 8401, 8402, 8403, 8503, 8531, 9019, 9201, 9223, 9271, 9902
		

Crossrefs

A075813 Palindromic even numbers with exactly 2 prime factors (counted with multiplicity). Equivalently, palindromic numbers of the form 2*p with p prime.

Original entry on oeis.org

4, 6, 22, 202, 262, 454, 626, 818, 838, 878, 898, 20302, 20602, 22322, 22522, 22622, 22822, 24142, 24842, 26662, 26762, 28682, 41014, 41414, 41614, 41714, 43034, 43234, 43534, 43634, 45454, 45554, 45754, 47074, 47374, 47774, 49094, 49394
Offset: 1

Views

Author

Jani Melik, Oct 13 2002

Keywords

Examples

			4=2^2, 6=2*3 and 22=2*11 are palindromic, even and have exactly 2 prime factors.
		

Crossrefs

Cf. A001747.
Even subsequence of A046328.

Programs

  • Maple
    test := proc(n) local d; d := convert(n,base,10); return ListTools[Reverse](d)=d and numtheory[bigomega](n)=2; end; a := []; for n from 2 to 50000 by 2 do if test(n) then a := [op(a),n]; end; od; a;
  • Mathematica
    Select[Range[50000],EvenQ[#]&&PalindromeQ[#]&&PrimeOmega[#]==2&] (* Harvey P. Dale, Oct 16 2024 *)

Extensions

Edited by Dean Hickerson, Oct 21 2002

A189484 Numbers that can be factored into semiprimes which, when concatenated in increasing order, produce a palindrome.

Original entry on oeis.org

1, 4, 6, 9, 16, 22, 33, 36, 55, 56, 64, 77, 81, 111, 121, 136, 141, 156, 161, 202, 216, 256, 262, 276, 296, 303, 323, 351, 376, 393, 441, 454, 484, 505, 515, 516, 535, 545, 560, 565, 621, 626, 707, 717, 729, 737, 765, 767, 784, 818, 838, 878, 898, 939, 949
Offset: 1

Views

Author

Jonathan Vos Post, Apr 22 2011

Keywords

Comments

This is to semiprimes A001358 as A046447 is to primes A000040.
The initial 1 represents the empty product.

Examples

			The first value not itself a semiprime palindrome (A046328) or power of semiprimes (i.e., 16 = 4 * 4 which concatenate to the palindrome 44, 484 = 22^2) is 56 = 4 * 14. The first where additionally the first factor is not a single digit is 765 = 15 * 51 = 3^2 * 5 * 17 since (15, 51) are a pair of emirpimes A097393, and 765 = A158126(1).
		

Crossrefs

Cf. A001358, A002113, A046328, A046447, A097393, A158126 Products of emirpimes pairs, sorted.

Programs

  • Mathematica
    ok[n_] := n == 1 || Block[{d, p = Join @@ mu /@ FactorInteger[n]}, EvenQ@ Length[p] && AnyTrue[ Union[ Sort /@ ((Times @@@ #) & /@ Union[ (Sort /@ Partition[#, 2]) & /@ Permutations[p]])], (d = Join @@ IntegerDigits[#]; d == Reverse[d]) &]]; Select[ Range[1000], ok] (* Giovanni Resta, Sep 15 2018 *)

Extensions

Additional terms from Franklin T. Adams-Watters, Apr 28 2011
More terms from Giovanni Resta, Sep 15 2018

A348050 Palindromes setting a new record of their number of prime divisors A001222.

Original entry on oeis.org

1, 2, 4, 8, 88, 252, 2112, 4224, 8448, 44544, 48384, 405504, 4091904, 405909504, 677707776, 4285005824, 21128282112, 29142024192, 4815463645184, 445488555884544, 27874867776847872, 40539458585493504, 63556806860865536, 840261068860162048, 4870324782874230784
Offset: 1

Views

Author

Hugo Pfoertner, Oct 25 2021

Keywords

Crossrefs

Programs

  • Mathematica
    m=0;lst=Union@Flatten[Table[{FromDigits@Join[s=IntegerDigits@n,Reverse@s],FromDigits@Join[w=IntegerDigits@n,Rest@Reverse@w]},{n,10^5}]];Do[t=PrimeOmega@lst[[n]];If[t>m,Print@lst[[n]];m=t],{n,Length@lst}] (* Giorgos Kalogeropoulos, Oct 25 2021 *)
  • Python
    from sympy import factorint
    from itertools import product
    def palsthru(maxdigits):
        midrange = [[""], [str(i) for i in range(10)]]
        for digits in range(1, maxdigits+1):
            for p in product("0123456789", repeat=digits//2):
                left = "".join(p)
                if len(left) and left[0] == '0': continue
                for middle in midrange[digits%2]:
                    yield int(left+middle+left[::-1])
    def afind(maxdigits):
        record = -1
        for p in palsthru(maxdigits):
            f = factorint(p, multiple=True)
            if p > 0 and len(f) > record:
                record = len(f)
                print(p, end=", ")
    afind(10) # Michael S. Branicky, Oct 25 2021

Extensions

a(1) = 1 from David A. Corneth, Oct 25 2021
a(16)-a(19) from Giorgos Kalogeropoulos, Oct 25 2021
a(20) from Michael S. Branicky, Oct 25 2021
a(21)-a(25) from Chai Wah Wu, Oct 28 2021
Previous Showing 11-15 of 15 results.