cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A089478 Triangle T(n,k) read by rows, where T(n,k) = number of times the determinant of a real n X n (0,1)-matrix takes the value k, for n >= 0, 0 <= k <= A003432(n).

Original entry on oeis.org

0, 1, 1, 1, 10, 3, 338, 84, 3, 42976, 10020, 1200, 60, 21040112, 4851360, 1213920, 144720, 43560, 3600, 39882864736, 9240051240, 3868663680, 768723480, 418703040, 63612360, 46569600, 6438600, 5014800, 529200, 292604283435872
Offset: 0

Views

Author

Hugo Pfoertner, Nov 04 2003

Keywords

Comments

The first 4 rows were provided by Wouter Meeussen.

Examples

			a(4) = T(2,1) = 3 because there are 3 different (0,1)-matrices with determinant=1:
  ((1,0),(0,1)), ((1,1),(0,1)), ((1,0),(1,1)).
Triangle T(n,k) begins:
         0,       1;
         1,       1;
        10,       3;
       338,      84,       3;
     42976,   10020,    1200,     60;
  21040112, 4851360, 1213920, 144720, 43560, 3600;
  ...
		

Crossrefs

Cf. T(n,0) = A046747(n), T(n,1) = A086264(n), T(n,A003432(n)) = A051752(n).
The n-th row of the table contains A089472(n) nonzero entries.
Cf. A089479.

Programs

Extensions

Edited by Alois P. Heinz, Dec 20 2023

A136609 (1/(n!)^2) * number of ways to arrange the consecutive numbers 1...n^2 in an n X n matrix with determinant = 0.

Original entry on oeis.org

0, 0, 76, 14392910
Offset: 1

Views

Author

Hugo Pfoertner, Jan 21 2008

Keywords

Comments

The computation of a(5) seems to be currently (Jan 2008) out of reach (compare with A088021(5)).

Examples

			a(1)=0 because det((1))/=0, a(2)=0, because the only possible determinants of a matrix with elements {1,2,3,4} are +-2, +-5 and +-10.
		

Crossrefs

Cf. A001044, A046747, a(3)=A088215(0), a(4)=A136608(0), A221976.

A057982 Number of singular n X n (-1,1)-matrices.

Original entry on oeis.org

0, 8, 320, 43264, 22003712, 43090149376, 326720427917312, 9588057159626653696, 1086099857128493963804672
Offset: 1

Views

Author

Eric W. Weisstein, Oct 23 2000

Keywords

Comments

a(n) = 2^(2n-1)*A046747(n-1). - Kevin Costello, May 18 2005

Crossrefs

Complement of A056990.
Cf. A046747.

Formula

a(n)/2^(n^2) ~ (1/2 + o_n(1))^n (proved by Tikhomirov). - Timothy Y. Chow, Jan 17 2019

Extensions

More terms from Kevin Costello, May 18 2005
a(6)-a(9) from Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 18 2008

A116977 Number of n X n rational {0,1}-matrices of determinant 0, up to row and column permutations.

Original entry on oeis.org

1, 5, 28, 256, 4471, 187300, 22290203, 8267860926
Offset: 1

Views

Author

Vladeta Jovovic, Apr 01 2006

Keywords

Crossrefs

Formula

a(n) = A002724(n) - A116976(n). - Max Alekseyev, Feb 28 2010

Extensions

a(8) from Alois P. Heinz, Jun 30 2022

A192892 Number of n X n binary matrices whose determinants equal their permanents.

Original entry on oeis.org

1, 2, 12, 343, 34997, 12515441, 15749457081, 72424550598849, 1282759836215548737
Offset: 0

Views

Author

John M. Campbell, Jul 11 2011

Keywords

Comments

Lower bounded by A088672.
Similar to A145675 and A145676.

Examples

			a(2) equals 12 because there are exactly twelve 2 X 2 binary matrices whose determinants equal their permanents; these matrices are:
|0 0|  |1 0|  |0 1|  |1 1|  |0 0|  |1 0|  |0 0|  |1 0|
|0 0|  |0 0|  |0 0|  |0 0|  |1 0|  |1 0|  |0 1|  |0 1|
.
|0 1|  |1 1|  |0 0|  |1 0|
|0 1|  |0 1|  |1 1|  |1 1|
		

Crossrefs

Programs

  • Mathematica
    Sum[KroneckerDelta[Det[Array[Mod[Floor[k/(2^(n*(#1 - 1) + #2 - 1))], 2] &, {n, n}]], Permanent[Array[Mod[Floor[k/(2^(n*(#1 - 1) + #2 - 1))], 2] &, {n, n}]]], {k, 0, (2^(n^2)) - 1}]
  • Python
    from itertools import product
    from sympy import Matrix
    def A192892(n): return 1 if n == 0 else sum(1 for m in product([0,1],repeat=n**2) if (lambda x:x.det()==x.per())(Matrix(n,n,m))) # Chai Wah Wu, Oct 01 2021

Formula

a(n) <= 2^(n^2), with equality for n<=1.

Extensions

a(0)=1 prepended and a(5)-a(8) from Christopher Culter, Apr 13 2016
Definition and example slightly modified by Harvey P. Dale, Feb 24 2017

A173760 Partials sums of A000410.

Original entry on oeis.org

0, 0, 6, 431, 66056, 27960727, 35744362616, 144901919316449
Offset: 1

Views

Author

Jonathan Vos Post, Feb 23 2010

Keywords

Comments

Partials sums of number of singular n X n rational (0,1)-matrices. The subsequence of primes in this partial sum begins: 431.

Examples

			a(8) = 0 + 0 + 6 + 425 + 65625 + 27894671 + 35716401889 + 144866174953833.
		

Crossrefs

Formula

a(n) = SUM[i=0..n] A000410(i).
Previous Showing 11-16 of 16 results.