cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A177855 Divisors of 2^1092 - 1.

Original entry on oeis.org

1, 3, 5, 7, 9, 13, 15, 21, 29, 35, 39, 43, 45, 49, 53, 63, 65, 79, 87, 91, 105, 113, 117, 127, 129, 145, 147, 157, 159, 169, 195, 203, 215, 237, 245, 261, 265, 273, 301, 313, 315, 337, 339, 371, 377, 381, 387, 395, 435, 441, 455, 471, 477, 507, 547, 553, 559, 565
Offset: 1

Views

Author

Reinhard Zumkeller, May 14 2010

Keywords

Comments

The sequence is finite with A000005(2^1092-1) = 178120883699712 terms.

Crossrefs

Programs

A051464 Number of divisors of 4*(2^n-1) + 1.

Original entry on oeis.org

2, 2, 2, 2, 4, 4, 2, 2, 4, 2, 4, 2, 4, 6, 4, 4, 16, 2, 4, 2, 4, 2, 4, 8, 12, 8, 2, 4, 8, 4, 4, 4, 4, 4, 4, 8, 8, 4, 8, 16, 8, 4, 8, 8, 6, 16, 8, 8, 8, 16, 8, 4, 32, 32, 8, 4, 8, 4, 4, 8, 16, 8, 8, 16, 48, 16, 16, 8, 4, 16, 4, 16, 16, 8, 8, 8, 16, 16, 8, 16, 32
Offset: 1

Views

Author

Edwin D. Evans, eevans2(AT)pacbell.net

Keywords

Comments

Create a table with tau(2^n-1) as the first row (A046801) and tau(m) as the first column (A000005). The second column is tau(A004760) and so on. Rows 2, 3 and 4 are easily described in terms of row 1. This sequence is row 5.

Crossrefs

Programs

  • Mathematica
    Array[DivisorSigma[0, 4*(2^# - 1) + 1] &, 81] (* Michael De Vlieger, Sep 15 2021 *)
  • PARI
    a(n) = numdiv(4*(2^n-1) + 1); \\ Michel Marcus, Sep 16 2021

Formula

a(n) = tau(4*(2^n -1)+1), where d(n) = A000005(n).

Extensions

a(81) corrected by Sean A. Irvine, Sep 15 2021

A086256 Number of base-2 Fermat pseudoprimes that divide 2^n-1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 2, 1, 4, 1, 2, 1, 1, 0, 13, 4, 5, 0, 2, 2, 1, 1, 13, 1, 1, 4, 7, 1, 11, 4, 14, 9, 4, 4, 28, 0, 12, 11, 12, 4, 2, 5, 28, 4, 26, 1, 63, 0, 1, 5, 12, 1, 29, 1, 12, 2, 44, 4, 101, 4, 11, 27, 12, 1, 26, 4, 15, 4, 11, 1, 75, 1, 11, 14, 36, 0, 40, 11
Offset: 1

Views

Author

T. D. Noe, Jul 14 2003

Keywords

Comments

A base-2 Fermat pseudoprime is a composite number x such that 2^x = 2 mod x.

Crossrefs

Cf. A001567 (base-2 pseudoprimes), A046801, A086249.

Programs

  • Mathematica
    Table[d=Divisors[2^n-1]; cnt=0; Do[m=d[[i]]; If[ !PrimeQ[m]&&PowerMod[2, m, m]==2, cnt++ ], {i, Length[d]}]; cnt, {n, 100}]

Formula

a(n) = Sum{d|n} A086249(d), the Mobius transform of A086249.

A283930 Numbers k such that tau(2^k - 1) = tau(2^k + 1).

Original entry on oeis.org

2, 11, 14, 21, 23, 29, 45, 47, 53, 71, 73, 74, 82, 86, 95, 99, 101, 105, 113, 115, 121, 142, 167, 169, 179, 181, 199, 203, 209, 233, 235, 277, 307, 311, 317, 335, 337, 343, 347, 349, 353, 355, 358, 361, 382, 434, 449, 465, 494, 509, 515, 518, 529, 535, 547, 549, 570, 583, 585, 599
Offset: 1

Views

Author

Jaroslav Krizek, Mar 18 2017

Keywords

Comments

tau(k) is the number of divisors of k (A000005).
Numbers k such that A046801(k) = A046798(k).
Numbers k such that A000005(A000225(k)) = A000005(A000051(k)).
Corresponding values of tau(2^k +- 1): 2, 4, 8, 12, 4, 8, 64, 8, 8, 8, 8, 32, 32, 32, 32, 256, 4, 1536, ...
Corresponding pairs of numbers (2^k - 1, 2^k + 1): (3, 5); (2047, 2049); (16383, 16385); (2097151, 2097153); (8388607, 8388609); ...

Examples

			For n = 11; tau(2047) = tau(2049) = 4.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..500] | NumberOfDivisors(2^n - 1) eq NumberOfDivisors(2^n + 1)]
    
  • Mathematica
    Select[Range@ 200, Function[n, Equal @@ Map[DivisorSigma[0, 2^n + #] &, {-1, 1}]]] (* Michael De Vlieger, Mar 18 2017 *)
  • PARI
    for(n=1, 600, if(numdiv(2^n - 1) == numdiv(2^n + 1), print1(n,", "))) \\ Indranil Ghosh, Mar 18 2017
    
  • Python
    from sympy import divisor_count
    print([n for n in range(1, 601) if divisor_count(2**n + 1) == divisor_count(2**n - 1)]) # Indranil Ghosh, Mar 18 2017

A336104 Number of permutations of the prime indices of A000225(n) = 2^n - 1 with at least one non-singleton run.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 96, 0, 120, 6, 0, 0, 720, 0, 0, 0, 0, 0, 720, 0, 0, 0, 0, 0, 322560, 0, 0, 0, 5040, 0, 4320, 0, 0, 0, 0, 0, 362880, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Sep 03 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(21) = 6 permutations of {4, 4, 31, 68}:
  (4,4,31,68)
  (4,4,68,31)
  (31,4,4,68)
  (31,68,4,4)
  (68,4,4,31)
  (68,31,4,4)
		

Crossrefs

A335432 is the anti-run version.
A335459 is the version for factorial numbers.
A336105 counts all permutations of this multiset.
A336107 is not restricted to predecessors of powers of 2.
A003242 counts anti-run compositions.
A005649 counts anti-run patterns.
A008480 counts permutations of prime indices.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A333489 ranks anti-run compositions.
A335433 lists numbers whose prime indices have an anti-run permutation.
A335448 lists numbers whose prime indices have no anti-run permutation.
A335452 counts anti-run permutations of prime indices.
A335489 counts strict permutations of prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Permutations[primeMS[2^n-1]],MatchQ[#,{_,x_,x_,_}]&]],{n,30}]

Formula

a(n) = A336107(2^n - 1).
a(n) = A336105(n) - A335432(n).

A336105 Number of permutations of the prime indices of 2^n - 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 6, 2, 6, 2, 60, 1, 6, 6, 24, 1, 120, 1, 360, 12, 24, 2, 2520, 6, 6, 6, 720, 6, 2520, 1, 120, 24, 6, 24, 604800, 2, 6, 24, 20160, 2, 10080, 6, 5040, 720, 24, 6, 1814400, 2, 5040, 120, 5040, 6, 15120, 720, 40320, 24, 720, 2
Offset: 1

Views

Author

Gus Wiseman, Sep 03 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(n) permutations for n = 2, 4, 6, 8, 21:
  (2)  (2,3)  (2,2,4)  (2,3,7)  (31,4,4,68)
       (3,2)  (2,4,2)  (2,7,3)  (31,4,68,4)
              (4,2,2)  (3,2,7)  (31,68,4,4)
                       (3,7,2)  (4,31,4,68)
                       (7,2,3)  (4,31,68,4)
                       (7,3,2)  (4,4,31,68)
                                (4,4,68,31)
                                (4,68,31,4)
                                (4,68,4,31)
                                (68,31,4,4)
                                (68,4,31,4)
                                (68,4,4,31)
		

Crossrefs

A008480 is not restricted to predecessors of powers of 2.
A325617 is the version for factorial numbers.
A335489 counts strict permutations of prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Permutations[primeMS[2^n-1]]],{n,30}]

Formula

a(n) = A008480(2^n - 1).
a(n) = A336104(n) + A335432(n).

A111303 Numbers n such that 2^tau(n) = n + 1 (where tau(n) = number of divisors of n).

Original entry on oeis.org

1, 3, 15, 63, 255, 65535, 4294967295
Offset: 1

Views

Author

Joseph L. Pe, Nov 02 2005

Keywords

Comments

It is clear that n+1 must be a power of 2. Hence n=2^k-1 for some k. Found k=1, 2, 4, 6, 8, 16, 32. No other k<150. - T. D. Noe, Nov 04 2005

Crossrefs

Cf. A046801 (number of divisors of 2^n-1), A019434.

Programs

  • Mathematica
    Select[Range[10^6], 2^DivisorSigma[0, # ] == # + 1 &]
    2^Select[Range[150], DivisorSigma[0, 2^#-1]==#&] - 1 (Noe)
  • Python
    from sympy import divisor_count as tau
    def afind(klimit, kstart=1):
        for k in range(kstart, klimit+1):
            m = 2**k - 1
            if 2**tau(m) == m + 1: print(m, end=", ")
    afind(klimit=100) # Michael S. Branicky, Dec 16 2021

Formula

Note that this is different from the sequence A019434 - 2.

Extensions

One more term from T. D. Noe, Nov 04 2005

A350142 Numbers m of the form 2^k + 1 such that tau(m-2) = tau(m-1) - 1.

Original entry on oeis.org

3, 5, 17, 65, 257, 65537, 4294967297
Offset: 1

Views

Author

Jaroslav Krizek, Dec 16 2021

Keywords

Comments

Corresponding pairs of values [tau(m-2), tau(m-1)]: [1, 2], [2, 3], [4, 5], [6, 7], [8, 9], [16, 17], [32, 33], ...
There are no other terms <= 2^1206 + 1 (from A046801 data).
The first 5 known Fermat primes from A019434 are in this sequence. Corresponding values of tau(A019434(n - 2)): 1, 2, 4, 8, 16, ...
Conjecture 1: Also numbers m of the form 2^k + 1 such that tau(m - 2) = k.
Conjecture 2: If 6th Fermat prime F_p6 exists, then tau(F_p6 - 2) is a power of 2 and tau(F_p6 - 1) = tau(F_p6 - 2) + 1.
Conjecture 3: Sequence is finite with 7 terms; supersequence of A262534.

Examples

			For number 257 holds: tau(255) = 8, tau(256) = 9.
		

Crossrefs

Intersection of (A055927+2) and A000051.

Programs

  • Magma
    [2^k + 1: k in [1..50] | #Divisors(2^k) - #Divisors(2^k-1) eq 1];
Previous Showing 21-28 of 28 results.