cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A100513 Denominator of Sum_{k=0..n} 1/C(2*n,2*k).

Original entry on oeis.org

1, 1, 6, 15, 35, 315, 13860, 3003, 9009, 765765, 1385670, 14549535, 66927861, 371821450, 40156716600, 145568097675, 136745788725, 128931743655, 9025222055850, 4281195077775, 166966608033225, 6845630929362225, 26165522663340060, 294362129962575675
Offset: 0

Views

Author

N. J. A. Sloane, Nov 25 2004

Keywords

Examples

			Sum_{k=0..n} 1/binomial(2*n,2*k) = {1, 2, 13/6, 32/15, 73/35, 647/315, 28211/13860, 6080/3003, 18181/9009, 1542158/765765, 2786599/1385670, 29229544/14549535, 134354573/66927861, ...} = A100512(n)/a(n).
		

References

  • M. Klamkin, ed., Problems in Applied Mathematics: Selections from SIAM Review, SIAM, 1990; see pp. 126-127.

Crossrefs

Programs

  • Magma
    [Denominator((&+[1/Binomial(2*n, 2*k): k in [0..n]])): n in [0..40]]; // G. C. Greubel, Mar 28 2023
    
  • Mathematica
    Table[Denominator[(2*n+1)*Sum[Beta[2k+1,2(n-k)+1], {k,0,n}]], {n,0,40}] (* G. C. Greubel, Mar 28 2023 *)
  • SageMath
    def A100513(n): return denominator((2*n+1)*sum(beta(2*k+1, 2*(n-k)+1) for k in range(n+1)))
    [A100513(n) for n in range(40)] # G. C. Greubel, Mar 28 2023

Formula

a(n) = denominator( Sum_{k=0..n} 1/binomial(2*n,2*k) ).
a(n) = denominator( (2*n+1)*Sum_{k=0..n} beta(2*k+1, 2*(n-k)+1) ). - G. C. Greubel, Mar 28 2023

A100517 Denominator of Sum_{k=0..n} 1/binomial(n,k)^2.

Original entry on oeis.org

1, 1, 4, 9, 72, 10, 3600, 1575, 2800, 1764, 14112, 13475, 34927200, 2316600, 192192, 4459455, 4994589600, 262061800, 735869534400, 17476901442, 422721728, 353723760, 31127690880, 10150725585, 59637542956992, 2205530434800, 155748568976000, 50956005028500
Offset: 0

Views

Author

N. J. A. Sloane, Nov 25 2004

Keywords

Examples

			1, 2, 9/4, 20/9, 155/72, 21/10, 7441/3600, 3224/1575, 5697/2800, 3575/1764, 28523/14112, 27183/13475, 70357417/34927200, 4661447/2316600, ... = A100516/A100517
		

References

  • H. W. Gould, Combinatorial Identities, Morgantown, 1972, p. 50, formula (5.2).

Crossrefs

Programs

  • Magma
    [Denominator( (&+[1/Binomial(n,k)^2: k in [0..n]]) ): n in [0..40]]; // G. C. Greubel, Jun 24 2022
    
  • Mathematica
    Table[Sum[1/Binomial[n,k]^2,{k,0,n}],{n,0,30}]//Denominator (* Harvey P. Dale, Apr 01 2019 *)
  • PARI
    a(n) = denominator(sum(k=0, n, 1/binomial(n,k)^2)); \\ Michel Marcus, Jun 24 2022
  • SageMath
    [denominator(sum(1/binomial(n,k)^2 for k in (0..n))) for n in (0..40)] # G. C. Greubel, Jun 24 2022
    

Formula

a(n) = denominator( 3*(n+1)^2/((n+2)*(2*n+3)*Catalan(n+1)) * Sum_{k=1..n+1} binomial(2*k, k)/k ). - G. C. Greubel, Jun 24 2022

A100514 Numerator of Sum_{k=0..n} 1/C(3*n, 3*k).

Original entry on oeis.org

1, 2, 41, 85, 9287, 10034, 4089347, 3529889, 119042647, 191288533, 1553111566613, 471993968921, 48141284433673, 287285900609, 24342145990117741, 68262703949495173, 490305954062679017, 2207402771385797549, 995490830339080453219, 188798823808438240073
Offset: 0

Views

Author

N. J. A. Sloane, Nov 25 2004

Keywords

Examples

			Sum_{k=0..n} 1/C(3*n, 3*k) = { 1, 2, 41/20, 85/42, 9287/4620, 10034/5005, 4089347/2042040, 3529889/1763580, 119042647/59491432, 191288533/95611230, 1553111566613/776363187600, ...} = a(n)/A100515(n).
		

References

  • M. Klamkin, ed., Problems in Applied Mathematics: Selections from SIAM Review, SIAM, 1990; see pp. 126-127.

Crossrefs

Programs

  • Magma
    [Numerator((&+[1/Binomial(3*n, 3*k): k in [0..n]])): n in [0..40]]; // G. C. Greubel, Mar 28 2023
    
  • Mathematica
    Table[Numerator[(3*n+1)*Sum[Beta[3k+1,3n-3k+1], {k,0,n}]], {n,0,40}] (* G. C. Greubel, Mar 28 2023 *)
  • SageMath
    def A100514(n): return numerator((3*n+1)*sum(beta(3*k+1, 3*n-3*k+1) for k in range(n+1)))
    [A100514(n) for n in range(40)] # G. C. Greubel, Mar 28 2023

Formula

a(n) = numerator( Sum_{k=0..n} 1/C(3*n, 3*k) ).
a(n) = numerator( (3*n+1)*Sum_{k=0..n} beta(3*k+1, 3*(n-k)+1) ). - G. C. Greubel, Mar 28 2023

A100515 Denominator of Sum_{k=0..n} 1/C(3*n, 3*k).

Original entry on oeis.org

1, 1, 20, 42, 4620, 5005, 2042040, 1763580, 59491432, 95611230, 776363187600, 235953517800, 24067258815600, 143627189706, 12170010541088400, 34128942604356600, 245138783756209200, 1103648327722933300, 497725329469811592240, 94396183175309095080, 538372898043179538939600
Offset: 0

Views

Author

N. J. A. Sloane, Nov 25 2004

Keywords

Examples

			Sum_{k=0..n} 1/binomial(3*n,3*k) = { 1, 2, 41/20, 85/42, 9287/4620, 10034/5005, 4089347/2042040, 3529889/1763580, 119042647/59491432, 191288533/95611230, 1553111566613/776363187600, ...} = A100514(n)/a(n).
		

References

  • M. Klamkin, ed., Problems in Applied Mathematics: Selections from SIAM Review, SIAM, 1990; see pp. 126-127.

Crossrefs

Programs

  • Magma
    [Denominator((&+[1/Binomial(3*n, 3*k): k in [0..n]])): n in [0..40]]; // G. C. Greubel, Mar 28 2023
    
  • Mathematica
    Table[Denominator[(3*n+1)*Sum[Beta[3k+1,3n-3k+1], {k,0,n}]], {n,0,40}] (* G. C. Greubel, Mar 28 2023 *)
  • SageMath
    def A100515(n): return denominator((3*n+1)*sum(beta(3*k+1, 3*n-3*k+1) for k in range(n+1)))
    [A100515(n) for n in range(40)] # G. C. Greubel, Mar 28 2023

Formula

a(n) = denominator( Sum_{k=0..n} 1/binomial(3*n,3*k) ).
a(n) = denominator( (3*n+1)*Sum_{k=0..n} beta(3*k+1, 3*(n-k)+1) ). - G. C. Greubel, Mar 28 2023

A100512 Numerator of Sum_{k=0..n} 1/C(2*n, 2*k).

Original entry on oeis.org

1, 2, 13, 32, 73, 647, 28211, 6080, 18181, 1542158, 2786599, 29229544, 134354573, 745984697, 80530073893, 291816652544, 274050911261, 258328905974, 18079412000719, 8574689239808, 334365081328507, 13707288497202919, 52386756782140399, 589296748617180608
Offset: 0

Views

Author

N. J. A. Sloane, Nov 25 2004

Keywords

Examples

			Sum_{k=0..n} 1/binomial(2*n, 2*k) = {1, 2, 13/6, 32/15, 73/35, 647/315, 28211/13860, 6080/3003, 18181/9009, 1542158/765765, 2786599/1385670, 29229544/14549535, 134354573/66927861, ...} = a(n)/A100513(n).
		

References

  • M. Klamkin, ed., Problems in Applied Mathematics: Selections from SIAM Review, SIAM, 1990; see pp. 126-127.

Crossrefs

Programs

  • Magma
    [Numerator((&+[1/Binomial(2*n, 2*k): k in [0..n]])): n in [0..40]]; // G. C. Greubel, Mar 28 2023
    
  • Mathematica
    Table[Sum[1/Binomial[2n,2k],{k,0,n}],{n,0,30}]//Numerator (* Harvey P. Dale, Aug 12 2016 *)
  • SageMath
    def A100512(n): return numerator((2*n+1)*sum(beta(2*k+1, 2*n-2*k+1) for k in range(n+1)))
    [A100512(n) for n in range(40)] # G. C. Greubel, Mar 28 2023

Formula

a(n) = numerator( Sum_{k=0..n} 1/binomial(2*n, 2*k) ).
a(n) = numerator( (2*n+1)*Sum_{k=0..n} beta(2*k+1, 2*n-2*k+1) ). - G. C. Greubel, Mar 28 2023

A100519 Denominator of Sum_{k=0..n} 1/binomial(n,k)^3.

Original entry on oeis.org

1, 1, 8, 27, 864, 500, 43200, 1157625, 42875, 571536, 8001504000, 61631955, 10650001824000, 8526987612000, 13865513485824, 91398648466125, 83564478597600, 4927753743913000, 4421332282230864000, 98559233902419862572, 340556687709473664000
Offset: 0

Views

Author

N. J. A. Sloane, Nov 25 2004

Keywords

Examples

			1, 2, 17/8, 56/27, 1759/864, 1009/500, 86831/43200, 2322304/1157625, 85922/42875, 1144667/571536, 16019198113/8001504000, 123357293/61631955, ... = A100518/A100519.
		

Crossrefs

Programs

  • Magma
    [Denominator( (&+[1/Binomial(n,k)^3: k in [0..n]]) ): n in [0..30]]; // G. C. Greubel, Jun 24 2022
    
  • Mathematica
    Table[Denominator[Sum[1/Binomial[n,k]^3, {k,0,n}]], {n,0,30}] (* G. C. Greubel, Jun 24 2022 *)
  • PARI
    a(n) = denominator(sum(k=0, n, 1/binomial(n,k)^3)); \\ Michel Marcus, Jun 25 2022
  • SageMath
    [denominator(sum(1/binomial(n,k)^3 for k in (0..n))) for n in (0..30)] # G. C. Greubel, Jun 24 2022
    

Formula

a(n) = denominator( Sum_{k=0..n} 1/binomial(n,k)^3 ).

A212045 Numerators in the resistance triangle: T(k,n)=b, where b/c is the resistance distance R(k,n) for k resistors in an n-dimensional cube.

Original entry on oeis.org

1, 3, 1, 7, 3, 5, 15, 7, 61, 2, 31, 15, 241, 25, 8, 21, 31, 131, 101, 137, 13, 127, 21, 12, 7, 2381, 343, 151, 255, 127, 2105, 167, 10781, 2033, 32663, 32, 511, 255, 16531, 929, 42061, 9383, 84677, 2357, 83, 1023, 511, 5231, 7387, 74189, 1771, 12419
Offset: 1

Views

Author

Peter J. C. Moses, Apr 28 2012

Keywords

Comments

The term "resistance distance" for electric circuits was in use years before it was proved to be a metric (on edges of graphs). The historical meaning has been described thus: "one imagines unit resistors on each edge of a graph G and takes the resistance distance between vertices i and j of G to be the effective resistance between vertices i and j..." (from Klein, 2002; see the References). Let R(k,n) denote the resistance distance for k resistors in an n-dimensional cube (for details, see Example and References). Then
R(k,n)=A212045(k,n)/A212046(k,n). Moreover,
A212045(1,n)=A090633(n), A212045(n,n)=A046878(n),
A212046(1,n)=A090634(n), A212046(n,n)=A046879(n).

Examples

			First six rows of A212045/A212046:
1
3/4 .... 1
7/12 ... 3/4 .... 5/6
15/32 .. 7/12 ... 61/96 ... 2/3
31/80 .. 15/32 .. 241/480 . 25/48 ... 8/15
21/64 .. 31/80 .. 131/320 . 101/240 . 137/320 . 13/30
The resistance distances for n=3 (the ordinary cube) are 7/12, 3/4, and 5/6, so that row 3 of the triangle of numerators is (7, 3, 5).  For the corresponding electric circuit, suppose X is a vertex of the cube. The resistance across any one of the 3 edges from X is 7/12 ohm; the resistance across any two adjoined edges (i.e., a diagonal of a face of the cubes) is 3/4 ohm; the resistance across and three adjoined edges (a diagonal of the cube) is 5/6 ohm.
		

References

  • F. Nedemeyer and Y. Smorodinsky, Resistances in the multidimensional cube, Quantum 7:1 (1996) 12-15 and 63.

Crossrefs

Programs

  • Mathematica
    R[0, n_] := 0; R[1, n_] := (2 - 2^(1 - n))/n;
    R[k_, n_] := R[k, n] = ((k - 1) R[k - 2, n] - n R[k - 1, n] + 2^(1 - n))/(k - n - 1)
    t = Table[R[k, n], {n, 1, 11}, {k, 1, n}]
    Flatten[Numerator[t]]    (* A212045 *)
    Flatten[Denominator[t]]  (* A212046 *)
    TableForm[Numerator[t]]
    TableForm[Denominator[t]]

Formula

A212045(n)/A212046(n) is the rational number R(k, n) =
[(k-1)*R(k-2,n)-n*R(k-1,n)+2^(1-n)]/(k-n-1), for n>=1, k>=1.

A212046 Denominators in the resistance triangle: T(k,n)=b, where b/c is the resistance distance R(k,n) for k resistors in an n-dimensional cube.

Original entry on oeis.org

1, 4, 1, 12, 4, 6, 32, 12, 96, 3, 80, 32, 480, 48, 15, 64, 80, 320, 240, 320, 30, 448, 64, 35, 20, 6720, 960, 420, 1024, 448, 7168, 560, 35840, 6720, 107520, 105, 2304, 1024, 64512, 3584, 161280, 35840, 322560, 8960, 315, 5120, 2304, 23040, 32256
Offset: 1

Views

Author

Peter J. C. Moses, Apr 30 2012

Keywords

Comments

The term "resistance distance" for electric circuits was in use years before it was proved to be a metric (on edges of graphs). The historical meaning has been described thus: "one imagines unit resistors on each edge of a graph G and takes the resistance distance between vertices i and j of G to be the effective resistance between vertices i and j..." (from Klein, 2002; see the References). Let R(k,n) denote the resistance distance for k resistors in an n-dimensional cube (for details, see Example and References). Then
R(k,n)=A212045(k,n)/A212046(k,n). Moreover,
A212045(1,n)=A090633(n), A212045(n,n)=A046878(n),
A212046(1,n)=A090634(n), A212046(n,n)=A046879(n).

Examples

			First six rows of A212045/A212046:
  1
  3/4 .... 1
  7/12 ... 3/4 .... 5/6
  15/32 .. 7/12 ... 61/96 ... 2/3
  31/80 .. 15/32 .. 241/480 . 25/48 ... 8/15
  21/64 .. 31/80 .. 131/320 . 101/240 . 137/320 . 13/30
The resistance distances for n=3 (the ordinary cube) are 7/12, 3/4, and 5/6, so that row 3 of the triangle of numerators is (7, 3, 5).  For the corresponding electric circuit, suppose X is a vertex of the cube.  The resistance across any one of the 3 edges from X is 7/12 ohm; the resistance across any two adjoined edges (i.e., a diagonal of a face of the cubes) is 3/4 ohm; the resistance across and three adjoined edges (a diagonal of the cube) is 5/6 ohm.
		

References

  • F. Nedemeyer and Y. Smorodinsky, Resistances in the multidimensional cube, Quantum 7:1 (1996) 12-15 and 63.

Crossrefs

Programs

  • Mathematica
    R[0, n_] := 0; R[1, n_] := (2 - 2^(1 - n))/n;
    R[k_, n_] := R[k, n] = ((k - 1) R[k - 2, n] - n R[k - 1, n] + 2^(1 - n))/(k - n - 1)
    t = Table[R[k, n], {n, 1, 11}, {k, 1, n}]
    Flatten[Numerator[t]]    (* A212045 *)
    Flatten[Denominator[t]]  (* A212046 *)
    TableForm[Numerator[t]]
    TableForm[Denominator[t]]

Formula

A212045(n)/A212046(n) is the rational number R(k, n) =
[(k-1)*R(k-2,n)-n*R(k-1,n)+2^(1-n)]/(k-n-1), for n>=1, k>=1.

A354478 a(n) is the numerator of Sum_{k=1..n} 1 / Stirling1(n,k).

Original entry on oeis.org

1, 0, 7, 25, 3991, 3923773, 4901627, 527165212865, 9823031039961293027, 123877274974851473572937, 443645907754951021537851199, 246932542361393897304051461727006396307, 1474846779473982897350113519971401527250089, 46578509609937575127608478711343978511593638945099881
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 02 2022

Keywords

Comments

Conjecture: a(n)/A354479(n) tends to 1 as n tends to infinity. For comparison: A112290(n)/A112291(n) tends to 2 as n tends to infinity. - Vaclav Kotesovec, Jun 02 2022

Examples

			1, 0, 7/6, 25/33, 3991/4200, 3923773/4192200, 4901627/5115600, 527165212865/545250747888, ...
		

Crossrefs

Cf. A008275, A046825, A112288, A112290, A354479 (denominators).

Programs

  • Mathematica
    Table[Sum[1/StirlingS1[n, k], {k, 1, n}], {n, 1, 14}] // Numerator
  • PARI
    a(n) = numerator(sum(k=1, n, 1/stirling(n, k, 1))); \\ Michel Marcus, Jun 02 2022

A122184 Numerator of Sum_{k=0..2n} (-1)^k/C(2n,k)^3.

Original entry on oeis.org

1, 15, 1705, 47789, 1369377, 213162301, 43005554527, 14505995375, 23869750002797, 2384790127843063, 624724994927411, 24386251366041479501, 2042595777439018142725, 11191251831905709132993
Offset: 0

Views

Author

Alexander Adamchuk, May 10 2007

Keywords

Comments

p^k divides a((p^k+1)/2) for prime p>2 and integer k>0.

Crossrefs

Cf. A046825 = Numerator of Sum_{k=0..n} 1/C(n, k). Cf. A100516 = Numerator of Sum_{k=0..n} 1/C(n, k)^2. Cf. A100518 = Numerator of Sum_{k=0..n} 1/C(n, k)^3. Cf. A100520 = Numerator of Sum_{k=0..2n} (-1)^k/C(2n, k)^2.

Programs

  • Mathematica
    Table[ Numerator[ Sum[ (-1)^k / Binomial[2n,k]^3, {k,0,2n} ] ], {n,0,25} ]

Formula

a(n) = Numerator[ Sum[ (-1)^k / Binomial[2n,k]^3, {k,0,2n} ] ].
Previous Showing 11-20 of 23 results. Next