cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A087444 Numbers that are congruent to {1, 4} mod 9.

Original entry on oeis.org

1, 4, 10, 13, 19, 22, 28, 31, 37, 40, 46, 49, 55, 58, 64, 67, 73, 76, 82, 85, 91, 94, 100, 103, 109, 112, 118, 121, 127, 130, 136, 139, 145, 148, 154, 157, 163, 166, 172, 175, 181, 184, 190, 193, 199, 202, 208, 211, 217, 220, 226, 229, 235, 238, 244, 247, 253
Offset: 1

Views

Author

Paul Barry, Sep 04 2003

Keywords

Comments

3*a(n) is conjectured to be the total number of sides (straight double bonds (long side) and single bond (short side)) of a certain equilateral triangle expansion shown in one of the links. The pattern is supposed to become the planar Archimedean net 3.3.3.3.6 when n -> infinity. 3*a(n) is also conjectured to be the total number of sided (bonds) in another version of an equilateral triangle expansion that is supposed to become the planar Archimedean net 3.6.3.6. See the illustrations in the links. - Kival Ngaokrajang, Nov 30 2014

Crossrefs

Programs

  • Mathematica
    Select[Range[300],MemberQ[{1,4},Mod[#,9]]&] (* or *) LinearRecurrence[ {1,1,-1},{1,4,10},60] (* Harvey P. Dale, Jan 22 2019 *)
  • PARI
    a(n) = (18*n - 17 - 3*(-1)^n)/4 \\ David Lovler, Aug 20 2022

Formula

G.f.: x*(1+3*x+5*x^2)/((1+x)*(1-x)^2).
E.g.f.: 5 + ((9*x - 17/2)*exp(x) - (3/2)*exp(-x))/2.
a(n) = (18*n - 17 - 3*(-1)^n)/4.
a(n) = 9*n - a(n-1) - 13 (with a(1)=1). - Vincenzo Librandi, Aug 08 2010

Extensions

Kival Ngaokrajang's comment reworded by Wolfdieter Lang, Dec 05 2014
E.g.f. and formula adapted to offset by David Lovler, Aug 20 2022

A258011 Numbers remaining after the third stage of Lucky sieve.

Original entry on oeis.org

1, 3, 7, 9, 13, 15, 21, 25, 27, 31, 33, 37, 43, 45, 49, 51, 55, 57, 63, 67, 69, 73, 75, 79, 85, 87, 91, 93, 97, 99, 105, 109, 111, 115, 117, 121, 127, 129, 133, 135, 139, 141, 147, 151, 153, 157, 159, 163, 169, 171, 175, 177, 181, 183, 189, 193, 195, 199, 201, 205, 211, 213, 217, 219, 223, 225, 231, 235, 237, 241, 243, 247, 253, 255
Offset: 1

Views

Author

Antti Karttunen, Jul 27 2015

Keywords

Comments

Equal to A047241 with its every seventh term (A258016) removed.
Numbers congruent to {1, 3, 7, 9, 13, 15, 21, 25, 27, 31, 33, 37} modulo 42. - Jianing Song, Apr 27 2022

Crossrefs

Row 3 of A258207.
Setwise difference of A047241 \ A258016.
Cf. also A260440 (Every ninth term).

Programs

  • Maple
    gf := (x*(1 + x*(2 + x*(4 + x*(2 + x*(4 + x*(2 + x*(6 + x*(4 + x*(2 + x*(4 + x*(2 + x*(4 + 5*x)))))))))))))/(1 - x*(1 + (1 - x)*x^11)): ser:= series(gf, x, 112):
    seq(coeff(ser, x, k), k = 1..74); # Peter Luschny, Apr 29 2022
  • Scheme
    (define (A258011 n) (A258207bi 3 n)) ;; A258207bi given in A258207.

Formula

From Jianing Song, Apr 27 2022: (Start)
a(n) = a(n-12) + 42.
a(n) = a(n-1) + a(n-12) - a(n-13).
G.f.:(x+2*x^2+4*x^3+2*x^4+4*x^5+2*x^6+6*x^7+4*x^8+2*x^9+4*x^10+2*x^11+4*x^12+5*x^13)/(1-x-x^12+x^13). (End)

A047262 Numbers that are congruent to {0, 2, 4, 5} mod 6.

Original entry on oeis.org

0, 2, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 22, 23, 24, 26, 28, 29, 30, 32, 34, 35, 36, 38, 40, 41, 42, 44, 46, 47, 48, 50, 52, 53, 54, 56, 58, 59, 60, 62, 64, 65, 66, 68, 70, 71, 72, 74, 76, 77, 78, 80, 82, 83, 84, 86, 88, 89, 90, 92, 94, 95, 96, 98
Offset: 1

Views

Author

Keywords

Comments

The sequence is the interleaving of A047233 with A016789(n-1). - Guenther Schrack, Feb 14 2019

Crossrefs

Complement: A047241.

Programs

  • Magma
    [n : n in [0..100] | n mod 6 in [0, 2, 4, 5]]; // Wesley Ivan Hurt, May 21 2016
    
  • Maple
    A047262:=n->(6*n-4-I^(1-n)+I^(1+n))/4: seq(A047262(n), n=1..100); # Wesley Ivan Hurt, May 21 2016
  • Mathematica
    Select[Range[0,100], MemberQ[{0,2,4,5}, Mod[#,6]]&] (* or *) LinearRecurrence[{2,-2,2,-1}, {0,2,4,5}, 70] (* Harvey P. Dale, Dec 09 2015 *)
  • PARI
    my(x='x+O('x^70)); concat([0], Vec(x^2*(2+x^2)/((1+x^2)*(1-x)^2))) \\ G. C. Greubel, Feb 16 2019
    
  • Sage
    a=(x^2*(2+x^2)/((1+x^2)*(1-x)^2)).series(x, 72).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 16 2019

Formula

From R. J. Mathar, Oct 08 2011: (Start)
G.f.: x^2*(2+x^2) / ( (1+x^2)*(1-x)^2 ).
a(n) = 3*n/2 - 1 - sin(Pi*n/2)/2. (End)
From Wesley Ivan Hurt, May 21 2016: (Start)
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) for n > 4.
a(n) = (6*n - 4 - i^(1-n) + i^(1+n))/4, where i = sqrt(-1).
a(2*n) = A016789(n-1) for n>0, a(2*n-1) = A047233(n).
a(2-n) = - A047237(n), a(n-1) = A047273(n) - 1 for n > 1. (End)
From Guenther Schrack, Feb 14 2019: (Start)
a(n) = (6*n - 4 - (1 - (-1)^n)*(-1)^(n*(n-1)/2))/4.
a(n) = a(n-4) + 6, a(1)=0, a(2)=2, a(3)=4, a(4)=5, for n > 4. (End)
Sum_{n>=2} (-1)^n/a(n) = log(3)/4 + log(2)/3 - sqrt(3)*Pi/36. - Amiram Eldar, Dec 17 2021

Extensions

More terms from Wesley Ivan Hurt, May 21 2016

A087446 Numbers that are congruent to {1, 6} mod 15.

Original entry on oeis.org

1, 6, 16, 21, 31, 36, 46, 51, 61, 66, 76, 81, 91, 96, 106, 111, 121, 126, 136, 141, 151, 156, 166, 171, 181, 186, 196, 201, 211, 216, 226, 231, 241, 246, 256, 261, 271, 276, 286, 291, 301, 306, 316, 321, 331, 336, 346, 351, 361, 366, 376, 381, 391, 396, 406
Offset: 1

Views

Author

Paul Barry, Sep 04 2003

Keywords

Comments

3*a(n) is conjectured to be the number of edges (bonds) visited when walking around the boundary of a certain equilateral triangle construction at the n-th iteration. See the illustration in the link. Note that isthmus edges (bridges) are counted twice. The pattern is supposed to become the planar Archimedean net 3.12.12 when n -> infinity. - Kival Ngaokrajang, Nov 30 2014

Crossrefs

Programs

  • Mathematica
    #+{1,6}&/@(15*Range[0,30])//Flatten (* or *) LinearRecurrence[{1,1,-1},{1,6,16},60] (* Harvey P. Dale, Dec 05 2018 *)

Formula

G.f.: x*(1 + 5*x + 9*x^2)/((1 + x)*(1 - x)^2).
E.g.f.: (30*x-1)*exp(x)/4 + 5*exp(-x)/4.
a(n) = (18*n-1)/4 + 5*(-1)^n/4.
a(n) = 15*n - a(n-1) - 23, with a(1)=1. - Vincenzo Librandi, Aug 08 2010

Extensions

Editing: rewording of Kival Ngaokrajang's comment. - Wolfdieter Lang, Dec 06 2014

A203016 Numbers congruent to {1, 2, 3, 4} mod 6, multiplied by 3.

Original entry on oeis.org

3, 6, 9, 12, 21, 24, 27, 30, 39, 42, 45, 48, 57, 60, 63, 66, 75, 78, 81, 84, 93, 96, 99, 102, 111, 114, 117, 120, 129, 132, 135, 138, 147, 150, 153, 156, 165, 168, 171, 174, 183, 186, 189, 192, 201, 204, 207, 210, 219, 222, 225, 228, 237, 240, 243, 246, 255, 258, 261, 264, 273, 276, 279, 282, 291, 294, 297
Offset: 1

Views

Author

N. J. A. Sloane, Dec 27 2011

Keywords

Comments

Appears to coincide with the list of numbers n such that A006600(n) is not a multiple of n. Equals A047227 multiplied by 3.

Crossrefs

Programs

  • Magma
    [3*n : n in [0..100] | n mod 6 in [1..4]]; // Wesley Ivan Hurt, Jun 07 2016
  • Maple
    A203016:=n->3*(6*n-5-I^(2*n)+(1+I)*I^(1-n)+(1-I)*I^(n-1))/4: seq(A203016(n), n=1..100); # Wesley Ivan Hurt, Jun 07 2016
  • Mathematica
    3 Select[Range[100], MemberQ[{1, 2, 3, 4}, Mod[#, 6]] &] (* Wesley Ivan Hurt, Jun 07 2016 *)

Formula

From Wesley Ivan Hurt, Jun 07 2016: (Start)
G.f.: 3*x*(1+x+x^2+x^3+2*x^4)/((x-1)^2*(1+x+x^2+x^3)).
a(n) = 3*(6*n-5-i^(2*n)+(1+i)*i^(1-n)+(1-i)*i^(n-1))/4 where i=sqrt(-1).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(2k) = 3*A047235(k), a(2k-1) = 3*A047241(k). (End)
E.g.f.: 3*(4 + sin(x) - cos(x) + (3*x - 2)*sinh(x) + 3*(x - 1)*cosh(x))/2. - Ilya Gutkovskiy, Jun 07 2016

A258016 Unlucky numbers removed at the stage three of Lucky sieve.

Original entry on oeis.org

19, 39, 61, 81, 103, 123, 145, 165, 187, 207, 229, 249, 271, 291, 313, 333, 355, 375, 397, 417, 439, 459, 481, 501, 523, 543, 565, 585, 607, 627, 649, 669, 691, 711, 733, 753, 775, 795, 817, 837, 859, 879, 901, 921, 943, 963, 985, 1005, 1027, 1047, 1069, 1089, 1111, 1131, 1153, 1173, 1195, 1215, 1237, 1257, 1279, 1299, 1321, 1341, 1363, 1383, 1405
Offset: 1

Views

Author

Antti Karttunen, Jul 27 2015

Keywords

Comments

Numbers congruent to 19 or 39 modulo 42. - Jianing Song, Apr 27 2022

Crossrefs

Row 3 of A255543. Every seventh term of A047241.
Cf. also A258011.

Formula

a(n) = A047241(7*n).
a(n) = A260436(A255413(1+n)).
From Jianing Song, Apr 27 2022: (Start)
a(n) = a(n-2) + 42.
a(n) = a(n-1) + a(n-2) - a(n-3).
G.f.: (19*x+20*x^2+3*x^3)/(1-x-x^2+x^3).
E.g.f.: 3 + (21*x-3)*cosh(x) + (21*x-2)*sinh(x). (End)

A271508 Numbers that are congruent to {1,4} mod 10.

Original entry on oeis.org

1, 4, 11, 14, 21, 24, 31, 34, 41, 44, 51, 54, 61, 64, 71, 74, 81, 84, 91, 94, 101, 104, 111, 114, 121, 124, 131, 134, 141, 144, 151, 154, 161, 164, 171, 174, 181, 184, 191, 194, 201, 204, 211, 214, 221, 224, 231, 234, 241, 244, 251, 254, 261, 264, 271, 274
Offset: 1

Views

Author

Wesley Ivan Hurt, Apr 08 2016

Keywords

Comments

Numbers ending in 1 or 4, Union of A017281 and A017317.
a(n+3) gives the sum of 5 consecutive terms of A004442 starting at A004442(n) for n>0. (i.e., a(4) = 14 = 0+3+2+5+4 = Sum_{i=0..4} A004442(n+i)).

Crossrefs

Programs

  • Magma
    [5*n-5-(-1)^n : n in [1..100]];
    
  • Maple
    A271508:=n->5*n-5-(-1)^n: seq(A271508(n), n=1..100);
  • Mathematica
    Table[5 n - 5 - (-1)^n, {n, 60}] (* or *)
    Select[Range[0, 300], MemberQ[{1, 4}, Mod[#, 10]] &]
  • PARI
    my(x='x+O('x^99)); Vec(x*(1+3*x+6*x^2)/((-1+x)^2*(1+x))) \\ Altug Alkan, Apr 09 2016

Formula

G.f.: x*(1+3*x+6*x^2)/((-1+x)^2*(1+x)).
a(n) = a(n-1) + a(n-2) - a(n-3) for n>3.
a(n) = 5*n - 5 - (-1)^n.
a(n) = -n + 2*A047241(n).
a(n+1) = n + 1 + 2*A042948(n).
Shifted bisections: a(2n+2) = A017317(n), a(2n+1) = A017281(n).
E.g.f.: 5*(x-1)*exp(x) - exp(-x). - G. C. Greubel, Apr 08 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(1+2/sqrt(5))*Pi/10 + log(phi)/sqrt(5) + log(2)/5, where phi is the golden ratio (A001622). - Amiram Eldar, Apr 15 2023

A308378 Numbers k such that phi(2k+1) = phi(2k+2).

Original entry on oeis.org

0, 1, 7, 127, 247, 487, 1312, 1627, 1852, 2593, 5857, 6682, 9157, 11467, 12772, 23107, 24607, 24667, 28822, 32767, 82087, 92317, 99157, 107887, 143497, 153697, 159637, 194122, 198742, 207637, 245767, 284407, 294703, 343492, 420127
Offset: 1

Views

Author

Torlach Rush, May 24 2019

Keywords

Comments

For n > 0, 2*a(n) + 1 is a term of A020884. This is because 2*a(n) + 1 is odd and every odd number is the difference of the squares of two consecutive numbers and hence are coprime.
For n > 0, (2*a(n) + 1) * (2*a(n) + 2) is a term of A024364. This is because (2*a(n) + 1) * (2*a(n) + 2) = 2*((a(n) + 1)^2 + (a(n) + 1) * a(n)) and gcd((a(n) + 1), a(n)) = 1.
For n > 0, a(n) is congruent to 1 or 4 mod 6.
2*a(n) + 1 is congruent to 1 or 3 mod 6 and is a term of A047241.
2*a(n) + 2 is congruent to 2 or 4 mod 6 and is a term of A047235.

Examples

			0 is a term because phi(1) = phi(2) = 1.
1 is a term because phi(3) = phi(4) = 2.
7 is a term because phi(15) = phi(16) = 8.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 9999], EulerPhi[2# + 1] == EulerPhi[2# + 2] &] (* Alonso del Arte, Jul 05 2019 *)
    Select[(#-1)/2&/@SequencePosition[EulerPhi[Range[900000]],{x_,x_}][[All,1]],IntegerQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 24 2019 *)
  • PARI
    lista(nn) = for(n=0, nn, if(eulerphi(2*n+1) == eulerphi(2*n+2), print1(n, ", ")));
    lista(430000)

Formula

a(n) = (A299535(n) - 2) / 2.

A379020 Numbers k such that 2^k - 25 is prime.

Original entry on oeis.org

5, 7, 9, 13, 33, 37, 57, 63, 93, 127, 129, 165, 189, 369, 717, 3079, 3087, 3925, 6709, 7633, 18001, 21961, 55557, 60415, 63589, 69463, 75949, 98265, 212295, 416773, 647545, 824325, 1538959, 2020893, 2421175
Offset: 1

Views

Author

Boyan Hu, Dec 13 2024

Keywords

Comments

Except for a(1), all terms are congruent to 1 or 3 mod 6.
a(36) > 3400000. - Boyan Hu, Jun 16 2025

Examples

			7 is in the sequence because 2^7-25=103 is prime.
8 is not in the sequence because 2^8-25=231=3*7*11 is not prime.
		

Crossrefs

Sequences of numbers k such that 2^k - d is prime: A000043 (d=1), A050414 (d=3), A059608 (d=5), A059609 (d=7), A059610 (d=9), A096817 (d=11), A096818 (d=13), A059612 (d=15), A059611 (d=17), A096819 (d=19), A096820 (d=21), A057220 (d=23), A356826 (d=29).
Except for a(1), subsequence of A047241.

Programs

  • Mathematica
    Do[ If[ PrimeQ[ 2^n - 25 ], Print[ n ] ], { n, 1, 15000} ]
  • PARI
    is(n)=ispseudoprime(2^n-25)

Extensions

a(1)=5 inserted by Max Alekseyev, May 28 2025

A051391 Number of nonisomorphic Steiner triple systems (STS's) S(2,3,v) on v = 6n+1 or 6n+3 points.

Original entry on oeis.org

1, 1, 1, 1, 2, 80, 11084874829
Offset: 1

Views

Author

Keywords

Examples

			There are 2 nonisomorphic STS's on 13 points.
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 304.
  • CRC Handbook of Combinatorial Designs, 1996, p. 70.

Crossrefs

Previous Showing 21-30 of 30 results.