A386380
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/6)} a(6*k) * a(n-1-6*k).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 15, 24, 34, 45, 57, 70, 154, 253, 368, 500, 650, 819, 1827, 3045, 4495, 6200, 8184, 10472, 23562, 39627, 59052, 82251, 109668, 141778, 320866, 543004, 814506, 1142295, 1533939, 1997688, 4540200, 7718340, 11633440, 16398200, 22137570
Offset: 0
-
A386380 := proc(n)
option remember ;
if n = 0 then
1;
else
add(procname(6*k)*procname(n-1-6*k),k=0..floor((n-1)/6)) ;
end if;
end proc:
seq(A386380(n),n=0..80) ; # R. J. Mathar, Jul 30 2025
-
apr(n, p, r) = r*binomial(n*p+r, n)/(n*p+r);
a(n) = apr(n\6, 7, n%6+1);
Original entry on oeis.org
0, 0, 1, 5, 26, 133, 708, 3861, 21604, 123266, 715221, 4206956, 25032840, 150413348, 911379384, 5562367173, 34164355848, 211015212580, 1309815397995, 8166460799805, 51120054233490, 321156223592865, 2024257417812240, 12797201858645100
Offset: 0
A082938
Number of solid 2-trees with 2n+1 edges.
Original entry on oeis.org
1, 1, 1, 2, 5, 13, 49, 201, 940, 4643, 24037, 127859, 696365, 3858759, 21704863, 123619126, 711787259, 4137614454, 24256010068, 143271593982, 852001881614, 5097719884665, 30670572676389, 185466705697057
Offset: 0
-
u[n_, k_, r_] := (r*Binomial[k*n + r, n]/(k*n + r));
e[n_, k_] := Sum[ u[j, k, 1 + (n - 2*j)*k/2], {j, 0, n/2}]
c[n_, k_] := If[n == 0, 1, (DivisorSum[n, EulerPhi[n/#]*Binomial[k*#, #] &] + DivisorSum[GCD[n-1, k], EulerPhi[#]*Binomial[n*k/#, (n-1)/#] &])/(k*n) - Binomial[k*n, n]/(n*(k - 1) + 1)];
T[n_, k_] := (1/2)*(c[n, k] + If[n == 0, 1, If[OddQ[k], If[OddQ[n], 2*u[ Quotient[n, 2], k, (k + 1)/2], u[n/2, k, 1] + u[n/2 - 1, k, k]], e[n, k] + If[OddQ[n], u[Quotient[n, 2], k, k/2]]]/2]) /. Null -> 0;
a[n_] := T[n, 3];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 14 2018, after Andrew Howroyd and A303929 *)
A084081
Sum of lists created by n substitutions k -> Range[k+1,0,-2] starting with {0}, counting down from k+1 to 0 step -2.
Original entry on oeis.org
0, 1, 2, 5, 10, 24, 50, 121, 260, 637, 1400, 3468, 7752, 19380, 43890, 110561, 253000, 641355, 1480050, 3771885, 8765250, 22439040, 52451256, 134796060, 316663760, 816540124, 1926501200, 4982228488, 11798983280, 30593078076, 72690164850
Offset: 0
Lists {0}, {1}, {2, 0}, {3, 1, 1}, {4, 2, 0, 2, 0, 2, 0} sum to 0, 1, 2, 5, 10.
-
F:=Floor; B:=Binomial;
function A084081(n)
if (n mod 2) eq 0 then return 10*B(F((3*n+2)/2), F((n-2)/2))/(n+3);
else return 2*(3*n+1)*B(F((3*n+5)/2), F((n+1)/2))/((n+3)*(3*n+5));
end if; return A084081;
end function;
[A084081(n): n in [0..40]]; // G. C. Greubel, Oct 17 2022
-
Plus@@@Flatten/@NestList[ # /. k_Integer :> Range[k+1, 0, -2]&, {0}, 8]
A084081[n_]:= If[EvenQ[n], 10*Binomial[(3*n+2)/2, (n-2)/2]/(n+3), 2*(3*n + 1)*Binomial[(3*n+5)/2, (n+1)/2]/((n+3)*(3*n+5))];
Table[A084081[n], {n, 40}] (* G. C. Greubel, Oct 17 2022 *)
-
def A084081(n):
if (n%2==0): return 10*binomial(int((3*n+2)/2), int((n-2)/2))/(n+3)
else: return 2*(3*n+1)*binomial(int((3*n+5)/2), int((n+1)/2))/((n+3)*(3*n+5))
[A084081(n) for n in range(40)] # G. C. Greubel, Oct 17 2022
A093951
Sum of integers generated by n-1 substitutions, starting with 1, k -> k+1, k-1, .., 1.
Original entry on oeis.org
1, 2, 4, 8, 17, 36, 80, 176, 403, 910, 2128, 4896, 11628, 27132, 65208, 153824, 373175, 888030, 2170740, 5202600, 12797265, 30853680, 76292736, 184863168, 459162452, 1117370696, 2786017120, 6804995008, 17024247304, 41717833740, 104673837384
Offset: 1
GF(12) = (1 + 2*x - 7*x^2 - 14*x^3 + 9*x^4 + 20*x^5 + 2*x^6 - 2*x^7 + 2*x^11)/(1 - 11*x^2 + 36*x^4 - 35*x^6 + 5*x^8) produces a(1) to a(12).
a(4)=8 since 4-1 = 3 substitutions on 1 produce 1 -> 2 -> 3+1 -> 4 + 2 + 2 = 8.
-
function A093951(n)
if (n mod 2) eq 0 then return 8*Binomial(Floor(3*n/2), Floor((n-2)/2))/(n+2);
else return 6*Binomial(Floor((3*n+1)/2), Floor((n-1)/2))/(n+2) - 2*Binomial(Floor((3*n-1)/2), Floor((n-1)/2))/(n+1);
end if; return A093951;
end function;
[A093951(n): n in [1..40]]; // G. C. Greubel, Oct 17 2022
-
Plus@@@Flatten/@NestList[ #/.k_Integer:>Range[k+1, 1, -2]&, {1}, 8];(*or for n>16 *); f[1]=1; f[2]=1-x^2; f[3]=1-2x^2; f[n_]:=f[n]=Expand[f[n-1]-x^2 f[n-3]]; g[1]=1; g[2]=1+2x; g[3]=1+2x+2x^2; g[n_]:=g[n]=Expand[g[n-1] -x^2 g[n-3]+2 x^(n-1)]; GF[n_]:=g[n]/f[n]; CoefficientList[Series[GF[36], {x, 0, 36}], x]
-
{a(n)=if(n%2==0,4*binomial(3*n/2,n/2-1)/(n/2+1), 6*binomial(3*(n\2)+2, n\2)/(2*(n\2)+3) - binomial(3*(n\2)+1,n\2)/(n\2+1))} \\ Paul D. Hanna, Apr 24 2006
-
def A093951(n):
if (n%2==0): return 8*binomial(3*n/2, (n-2)/2)/(n+2)
else: return 6*binomial((3*n+1)/2, (n-1)/2)/(n+2) - 2*binomial((3*n-1)/2, (n-1)/2)/(n+1)
[A093951(n) for n in range(1,40)] # G. C. Greubel, Oct 17 2022
A219795
Sum of the absolute values of the antidiagonals of the triangle A135929(n) companion. See the comment.
Original entry on oeis.org
2, 2, 2, 2, 3, 3, 5, 7, 10, 11, 16, 23, 33, 44, 58, 81, 114, 158, 212, 293, 407, 565, 777, 1064, 1471, 2036, 2813, 3863, 5334, 7370, 10183, 14046, 19356, 26726, 36909, 50955, 70251, 96977, 133886, 184841, 255092
Offset: 0
a(0)=2, a(1)=2, a(2)=2+0, a(3)=2+0, a(4)=2+0+1, a(5)=2+0+1.
a(24)-a(40) from Jean-Francois Alcover, Nov 28 2012
A124747
Inverse of number triangle A124744.
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 2, 2, 2, 1, 0, 0, 3, 3, 3, 2, 1, 0, 0, 7, 7, 7, 5, 3, 1, 0, 0, 12, 12, 12, 9, 6, 3, 1, 0, 0, 30, 30, 30, 23, 16, 9, 4, 1, 0, 0, 55, 55, 55, 43, 31, 19, 10, 4, 1
Offset: 0
Triangle begins
1,
0, 1,
0, 0, 1,
0, 0, 1, 1,
0, 0, 1, 1, 1,
0, 0, 2, 2, 2, 1,
0, 0, 3, 3, 3, 2, 1,
0, 0, 7, 7, 7, 5, 3, 1,
0, 0, 12, 12, 12, 9, 6, 3, 1
A124816
Product of Riordan array (1,x(1-x^2))^(-1) and number triangle T(n,k)=C(floor(k/2),n-k).
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 2, 1, 1, 0, 3, 3, 3, 2, 1, 0, 0, 7, 4, 5, 2, 1, 0, 12, 12, 12, 10, 6, 3, 1, 0, 0, 30, 18, 24, 12, 9, 3, 1, 0, 55, 55, 55, 50, 32, 22, 10, 4, 1, 0, 0, 143, 88, 121, 66, 57, 25, 14, 4, 1, 0, 273, 273, 273
Offset: 0
Triangle begins
1,
0, 1,
0, 0, 1,
0, 1, 1, 1,
0, 0, 2, 1, 1,
0, 3, 3, 3, 2, 1,
0, 0, 7, 4, 5, 2, 1,
0, 12, 12, 12, 10, 6, 3, 1,
0, 0, 30, 18, 24, 12, 9, 3, 1,
0, 55, 55, 55, 50, 32, 22, 10, 4, 1
A192894
Number of symmetric 13-ary factorizations of the n-cycle (1,2...n).
Original entry on oeis.org
1, 1, 1, 7, 13, 112, 247, 2310, 5525, 53998, 135408, 1360289, 3518515, 36017352, 95223414, 988172368, 2655417765, 27844071255, 75769712590, 801012669457, 2201663313200, 23428926096576, 64924369564353, 694644371065372, 1938034271677595, 20829931845958872, 58448142042957576
Offset: 0
A217138
G.f. A(x) satisfies A(x) = 1 + x*A(x)^2*(A(x) + A(-x))/2.
Original entry on oeis.org
1, 1, 2, 7, 22, 94, 340, 1579, 6118, 29746, 120060, 600934, 2492028, 12725756, 53798888, 278786739, 1195684230, 6265816042, 27175425004, 143671870034, 628705751828, 3347680236132, 14756641134872, 79039468217086, 350529497005532, 1886818634445044, 8410852483002200
Offset: 0
A(x) = 1 + x + 2*x^2 + 7*x^3 + 22*x^4 + 94*x^5 + 340*x^6 + 1579*x^7 +...
Related expansions:
A(x)^2 = 1 + 2*x + 5*x^2 + 18*x^3 + 62*x^4 + 260*x^5 + 1005*x^6 + 4522*x^7 +...
(A(x) + A(-x))/2 = 1 + 2*x^2 + 22*x^4 + 340*x^6 + 6118*x^8 +...
-
{a(n)=local(A=1+O(x^(n+1))); for(i=0, n, A=1+x*A^2*(A+subst(A, x, -x))/2); polcoeff(A, n)}
for(n=0,30,print1(a(n),", "))
Comments