cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 42 results. Next

A001830 Related to graded partially ordered sets.

Original entry on oeis.org

1, 7, 61, 661, 8953, 152917, 3334921, 94354981, 3528929353, 177999003157, 12340001650921, 1194005625114661, 162936187792764073, 31536761103831315157, 8677703806537883683081, 3395880602480076153665701, 1889190751946097573211698313
Offset: 0

Views

Author

Keywords

Comments

Corresponds to the numbers c(7,n) in the Klarner paper. - Sean A. Irvine, Sep 24 2015

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=7 of A361950.

Formula

a(n) = Sum_{p+q+r+s+t+u+v=n} (n!/p!q!r!s!t!u!v!) 2^(pq+qr+rs+st+tu+uv) where (p,q,r,s,t,u,v) is any nonnegative composition of n. - Sean A. Irvine, Sep 24 2015

Extensions

More terms from Sean A. Irvine, Sep 24 2015

A002027 Number of connected graphs on n labeled nodes, each node being colored with one of 2 colors, such that no edge joins nodes of the same color.

Original entry on oeis.org

1, 2, 2, 6, 38, 390, 6062, 134526, 4172198, 178449270, 10508108222, 853219059726, 95965963939958, 15015789392011590, 3282145108526132942, 1005193051984479922206, 432437051675617901246918, 261774334771663762228012950, 223306437526333657726283273822
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of connected labeled graphs with n 2-colored nodes where black nodes are only connected to white nodes and vice versa. - Geoffrey Critzer, Sep 05 2013

References

  • R. C. Read, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of A322279.
Essentially the same as A002031.
Cf. A002032.

Programs

  • Mathematica
    nn=10;f[x_]:=Sum[Sum[Binomial[n,k]2^(k(n-k)),{k,0,n}]x^n/n!,{n,0,nn}];Range[0,nn]!CoefficientList[Series[Log[f[x]]+1,{x,0,nn}],x] (* Geoffrey Critzer, Sep 05 2013 *)
  • PARI
    seq(n)={Vec(serlaplace(1 + log(serconvol(sum(j=0, n, x^j*2^binomial(j, 2)) + O(x*x^n), (sum(j=0, n, x^j/(j!*2^binomial(j, 2))) + O(x*x^n))^2))))} \\ Andrew Howroyd, Dec 03 2018

Formula

a(n) = m_n(2) using the functions defined in A002032. - Sean A. Irvine, May 29 2013
E.g.f.: log(A(x))+1 where A(x) is the e.g.f. for A047863. - Geoffrey Critzer, Sep 05 2013
Logarithmic transform of A047863. - Andrew Howroyd, Dec 03 2018

Extensions

Corrected and extended by Sean A. Irvine, May 29 2013
Name clarified by Andrew Howroyd, Dec 03 2018

A058872 Number of 2-colored labeled graphs with n nodes.

Original entry on oeis.org

0, 2, 12, 80, 720, 9152, 165312, 4244480, 154732800, 8005686272, 587435092992, 61116916981760, 9011561121239040, 1882834327457349632, 557257804202631217152, 233610656002563147038720, 138681207656726645785559040, 116575238610106596799428165632
Offset: 1

Views

Author

N. J. A. Sloane, Jan 07 2001

Keywords

Comments

A coloring of a simple graph is a choice of color for each graph vertex such that no two vertices sharing the same edge have the same color. A213441 counts those colorings of labeled graphs on n vertices that use exactly two colors. This sequence is 1/2 of A213441 (1/2 of column 2 of Table 1 in Read). - Peter Bala, Apr 11 2013
A047863 counts colorings of labeled graphs on n vertices that use two or fewer colors. - Peter Bala, Apr 11 2013

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 18, Table 1.5.1.
  • A. Mukhopadhyay, Lupanov decoding networks, in A. Mukhopadhyay, ed., Recent Developments in Switching Theory, Ac. Press, 1971, Chap. 3, see esp. p. 82 (number of shell functions).

Crossrefs

A diagonal of A058843.
One half of A213441.

Programs

  • Maple
    A058872 := n->add(binomial(n,k)*2^(n-k)*2^(k*(n-k)),k=0..n-1);
  • Mathematica
    f[list_] := (Apply[Multinomial,list] * 2^((Total[list]^2 - Total[Table[list[[i]]^2, {i, 1, Length[list]}]])/2))/2!; Table[Total[Map[f, Select[Compositions[n,2], Count[#,0]==0&]]], {n, 1, 20}] (* Geoffrey Critzer, Oct 24 2011 *)

A244754 a(n) = Sum_{k=0..n} C(n,k) * (1 + 2^k)^(n-k).

Original entry on oeis.org

1, 3, 11, 51, 311, 2583, 30011, 495771, 11740271, 399511023, 19531952051, 1369534859091, 137461591250951, 19708614005005383, 4029559971566918891, 1172950335844577723211, 485515762655939377001951, 285459356061242116657495263, 238215406681004045293498284131
Offset: 0

Views

Author

Paul D. Hanna, Jul 05 2014

Keywords

Examples

			E.g.f.: A(x) = 1 + 3*x + 11*x^2/2! + 51*x^3/3! + 311*x^4/4! + 2583*x^5/5! +...
where
A(x) = exp(x)*(1 + 2*x + 6*x^2/2! + 26*x^3/3! + 162*x^4/4! + 1442*x^5/5! +...+ A047863(n)*x^n/n! +...).
ILLUSTRATION OF INITIAL TERMS:
a(1) = (1+2^0)^1 + (1+2^1)^0 = 3;
a(2) = (1+2^0)^2 + 2*(1+2^1)^1 + (1+2^2)^0 = 11;
a(3) = (1+2^0)^3 + 3*(1+2^1)^2 + 3*(1+2^2)^1 + (1+2^3)^0 = 51;
a(4) = (1+2^0)^4 + 4*(1+2^1)^3 + 6*(1+2^2)^2 + 4*(1+2^3)^1 + (1+2^4)^0 = 311; ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k] * (1 + 2^k)^(n-k),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jan 25 2015 *)
  • PARI
    {a(n) = sum(k=0,n,binomial(n,k) * (1 + 2^k)^(n-k) )}
    for(n=0,25,print1(a(n),", "))
    
  • PARI
    /* E.g.f.: Sum_{n>=0} exp((1+2^n)*x)*x^n/n!: */
    {a(n)=n!*polcoeff(sum(k=0, n, exp((1+2^k)*x +x*O(x^n))*x^k/k!), n)}
    for(n=0,25,print1(a(n),", "))
    
  • PARI
    /* O.g.f. Sum_{n>=0} x^n/(1 - (1+2^n)*x)^(n+1): */
    {a(n)=polcoeff(sum(k=0, n, x^k/(1-(1+2^k)*x +x*O(x^n))^(k+1)), n)}
    for(n=0,25,print1(a(n),", "))

Formula

E.g.f.: Sum_{n>=0} exp((1+2^n)*x) * x^n/n!.
O.g.f.: Sum_{n>=0} x^n/(1 - (1+2^n)*x)^(n+1).
a(n) ~ c * 2^(n^2/4 + n + 1/2) / sqrt(Pi*n), where c = JacobiTheta3(0, 1/2) = EllipticTheta[3, 0, 1/2] = 2.1289368272118771586... if n is even, and c = JacobiTheta2(0, 1/2) = EllipticTheta[2, 0, 1/2] = 2.12893125051302755859... if n is odd. - Vaclav Kotesovec, Jan 25 2015

A000685 Number of 3-colored labeled graphs on n nodes, divided by 3.

Original entry on oeis.org

1, 5, 41, 545, 11681, 402305, 22207361, 1961396225, 276825510401, 62368881977345, 22413909724518401, 12840603873823473665, 11720394922432296755201, 17037597932370037286600705
Offset: 1

Views

Author

Keywords

Comments

Sequence represents 1/3 of the number of 3-colored labeled graphs on n nodes. Indeed, on p. 413 of the Read paper, column 3 is 3, 15, 123, 1635, ...; or see A047863. - Emeric Deutsch, May 06 2004

References

  • R. C. Read, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    c[0]:=1: for n from 1 to 30 do c[n]:=sum(binomial(n,i)*2^(i*(n-i)),i=0..n) od: a:=n->(1/3)*sum(binomial(n,j)*2^(j*(n-j))*c[j],j=0..n): seq(a(n),n=1..19);
  • Mathematica
    a[n_] := 1/3*Sum[ 2^((i-j)*j + i*(n-i))*Binomial[n, i]*Binomial[i, j], {i, 0, n}, {j, 0, i}]; Table[ a[n], {n, 1, 14}] (* Jean-François Alcover, Dec 07 2011, after Emeric Deutsch *)

Formula

a(n) = (1/3)Sum_{j=0..n} binomial(n, j)*2^(j(n-j))*c(j) where c(n) = Sum_{i=0..n} binomial(n, i)*2^(i(n-i)) = A047863(n). - Emeric Deutsch, May 06 2004
From Peter Bala, Apr 12 2013: (Start)
a(n) = 1/3*A191371(n). Let E(x) = Sum_{n >= 0} x^n/(n!*2^C(n,2)). Then a generating function for this sequence is 1/3*E(x)^3 - 1/3 = Sum_{n >= 1} a(n)*x^n/(n!*2^C(n,2)) = x + 5*x^2/(2!*2) + 41*x^3/(3!*2^3) + .... In general, E(x)^k, k = 1, 2, ..., is a generating function for labeled k-colored graphs (see Read). For examples see A047863 (k = 2), A191371 (k = 3) and A223887 (k = 4). (End)

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com) and Emeric Deutsch, May 05 2004

A221493 Number of tangled bicolored graphs on n labeled vertices.

Original entry on oeis.org

0, 0, 0, 0, 12, 120, 2460, 64680, 2323692, 111920760, 7272700860, 639739653960, 76764606923532, 12645557866982040, 2878366780307114460, 909775941009828296040, 401039212596034472197932, 247339947733328456032703160, 214013123181627427780427544060
Offset: 0

Views

Author

Mathieu Guay-Paquet, Jan 18 2013

Keywords

Comments

A bicolored graph on n labeled vertices, k of which are black, and (n-k) of which are white, can be represented as a k X (n-k) matrix, where the (i,j) entry is 1 if the i-th black vertex is adjacent to the j-th white vertex, and 0 otherwise. Then, the graph is tangled if (1) the matrix does not have any rows or columns of all 0's or all 1's; and (2) it is not possible to permute the rows of the matrix and the columns of the matrix to obtain a matrix of the form
[ A | J ]
[---+---]
[ 0 | B ]
where the top right block J consists of all 1's, and the bottom left block 0 consists of all 0's.

Examples

			The only tangled bicolored graph on 4 vertices (up to isomorphism) consists of 2 black vertices, 2 white vertices, and 2 edges, with each black vertex joined to a different white vertex. Given 4 labels, there are 12 distinct ways of labeling the vertices, so a(4) = 1.
		

Crossrefs

Programs

  • Mathematica
    nmax = 19;
    B[x_] = Sum[Exp[2^n x] x^n/n!, {n, 0, nmax}] + O[x]^nmax;
    T[x_] = 2 Exp[-x] - 1 - 1/B[x] + O[x]^nmax;
    CoefficientList[T[x], x] Range[0, nmax-1]! (* Jean-François Alcover, Aug 12 2018 *)

Formula

E.g.f.: T(x) = 2*e^(-x) - 1 - 1/B(x), where B(x) is the e.g.f. for A047863.

A222863 Strongly graded (3+1)-free partially ordered sets (posets) on n labeled vertices.

Original entry on oeis.org

1, 1, 3, 13, 111, 1381, 22383, 461413, 12163791, 420626821, 19880808303, 1337330559973, 130909732781391, 18649561895661061, 3830195104867879023, 1124247654215697637093, 469367653568553278229711, 278046313987470874905216901, 233462156432002170491075384943
Offset: 0

Views

Author

Joel B. Lewis, Mar 07 2013

Keywords

Comments

Here "strongly graded" means that every maximal chain has the same length. Alternate terminology includes "graded" (e.g., in Stanley 2012) and "tiered" (as in A006860). A poset is said to be (3+1)-free if it does not contain four elements a, b, c, d such that a < b < c and d is incomparable to the other three.

References

  • R. P. Stanley, Enumerative Combinatorics, Volume 1. Cambridge University Press. 2nd edition, 2012. http://math.mit.edu/~rstan/ec/ec1/

Crossrefs

For strongly graded (3+1)-free posets by height, see A222864. For weakly graded (3+1)-free posets, see A222865. For all strongly graded posets, see A006860. For all (3+1)-free posets, see A079145.

Programs

  • Mathematica
    m = maxExponent = 19;
    Psi[x_] = Sum[E^(2^n*x)*x^n/n!, {n, 0, m}] + O[x]^m;
    H[x_, y_] = 1+(2x^3 - 3x^2 + (x^3 - 4x^2 + 4x)y)/(2x^2 + x + (x^2-2x-1) y);
    CoefficientList[H[E^x, Psi[x]] + O[x]^m, x] Range[0, m-1]! (* Jean-François Alcover, Dec 11 2018 *)

Formula

G.f.: H(e^x, Psi(x)) where H(x, y) = 1 + (2x^3 - 3x^2 + (x^3 - 4x^2 + 4x)y)/(2x^2 + x + (x^2 - 2x - 1)y) and Psi(x) is the g.f. for A047863.

A222865 Weakly graded (3+1)-free partially ordered sets (posets) on n labeled vertices.

Original entry on oeis.org

1, 1, 3, 19, 195, 2551, 41343, 826939, 20616795, 658486351, 28264985223, 1725711709459, 155998194920835, 21019550046219271, 4162663551546902223, 1192847436856343300779, 489879387071459457083115, 286844271719979335180726911, 238844671940165660117456403543
Offset: 0

Views

Author

Joel B. Lewis, Mar 07 2013

Keywords

Comments

Here "weakly graded" means that there is a rank function rk from the vertices to the integers such that whenever x covers y we have rk(x) = rk(y) + 1. Alternate terminology includes "graded" and "ranked." A poset is said to be (3+1)-free if it does not contain four vertices a, b, c, d such that a < b < c and d is incomparable to the other three.

Crossrefs

For weakly graded (3+1)-free posets by height, see A222866. For strongly graded (3+1)-free posets, see A222863. For all weakly graded posets, see A001833. For all (3+1)-free posets, see A079145.

Programs

  • Mathematica
    m = maxExponent = 19;
    Psi[x_] = Sum[E^(2^n x) x^n/n!, {n, 0, m}] + O[x]^m;
    W[x_, y_] = (1-x)y/x + (2x^3 + (x^3 - 2x^2)y)/(2x^2 + x + (x^2-2x-1) y);
    CoefficientList[W[E^x, Psi[x]] + O[x]^m, x] Range[0, m-1]! (* Jean-François Alcover, Dec 11 2018 *)

Formula

G.f. is W(e^x, Psi(x)) where W(x, y) = (1 - x)y/x + (2x^3 + (x^3 - 2x^2)y)/(2x^2 + x + (x^2 - 2x - 1)y) and Psi(x) is the GF for A047863.

A320287 a(n) = n! * [x^n] Sum_{k>=0} exp(n^k*x)*x^k/k!.

Original entry on oeis.org

1, 2, 6, 56, 2050, 318752, 252035714, 980755711616, 23647746367946754, 3088949241542073508352, 2940240000900000020000000002, 16218429504693724464229916894517248, 748528620411995327278028288988088683724802, 210422023062476527874650307058798916093350502080512
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 09 2018

Keywords

Crossrefs

Programs

  • Magma
    [(&+[Binomial(n,k)*n^(k*(n-k)):k in [0..n]]): n in [0..20]]; // G. C. Greubel, Nov 04 2018
  • Mathematica
    Join[{1}, Table[n! SeriesCoefficient[Sum[Exp[n^k x] x^k/k!, {k, 0, n}], {x, 0, n}], {n, 13}]]
    Join[{1}, Table[SeriesCoefficient[Sum[x^k/(1 - n^k x)^(k + 1), {k, 0, n}], {x, 0, n}], {n, 13}]]
    Join[{1}, Table[Sum[Binomial[n, k] n^(k (n - k)), {k, 0, n}], {n, 13}]]
  • PARI
    for(n=0,20, print1(sum(k=0,n, binomial(n,k)*n^(k*(n-k))), ", ")) \\ G. C. Greubel, Nov 04 2018
    

Formula

a(n) = [x^n] Sum_{k>=0} x^k/(1 - n^k*x)^(k+1).
a(n) = Sum_{k=0..n} binomial(n,k)*n^(k*(n-k)).
a(n) ~ 2^(n + 1/2) * n^(n^2/4 - 1/2) / sqrt(Pi) if n is even and a(n) ~ 2^(n + 3/2) * n^(n^2/4 - 3/4) / sqrt(Pi) if n is odd. - Vaclav Kotesovec, Jul 06 2022

A122801 Number of labeled bipartite graphs on 2n vertices having equal parts and no isolated vertices.

Original entry on oeis.org

1, 1, 21, 2650, 1452605, 3149738046, 26503552820514, 868081172737564500, 111606080497500509325405, 56762846667123360827351083510, 114847831981827229530824587617895286, 927685362544629192461621864598358779955500, 29976424929810726580224613882836823991388901138994
Offset: 0

Views

Author

Max Alekseyev, Sep 11 2006

Keywords

Crossrefs

Programs

  • PARI
    { A122801(n) = binomial(2*n-1,n) * sum(k=0, n, binomial(n, k) * (-1)^k * (2^(n-k)-1)^n ); }

Formula

For n>0, a(n) = A001700(n-1) * A048291(n) = A052332(2n) - A122802(2n).

Extensions

Terms a(11) and beyond from Andrew Howroyd, Nov 07 2019
Previous Showing 21-30 of 42 results. Next