A001830
Related to graded partially ordered sets.
Original entry on oeis.org
1, 7, 61, 661, 8953, 152917, 3334921, 94354981, 3528929353, 177999003157, 12340001650921, 1194005625114661, 162936187792764073, 31536761103831315157, 8677703806537883683081, 3395880602480076153665701, 1889190751946097573211698313
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- John Cerkan, Table of n, a(n) for n = 0..112
- D. A. Klarner, The number of graded partially ordered sets, J. Combin. Theory, 6 (1969), 12-19.
- D. A. Klarner, The number of graded partially ordered sets, J. Combin. Theory, 6 (1969), 12-19. [Annotated scanned copy]
- Index entries for sequences related to posets
A002027
Number of connected graphs on n labeled nodes, each node being colored with one of 2 colors, such that no edge joins nodes of the same color.
Original entry on oeis.org
1, 2, 2, 6, 38, 390, 6062, 134526, 4172198, 178449270, 10508108222, 853219059726, 95965963939958, 15015789392011590, 3282145108526132942, 1005193051984479922206, 432437051675617901246918, 261774334771663762228012950, 223306437526333657726283273822
Offset: 0
- R. C. Read, personal communication.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
nn=10;f[x_]:=Sum[Sum[Binomial[n,k]2^(k(n-k)),{k,0,n}]x^n/n!,{n,0,nn}];Range[0,nn]!CoefficientList[Series[Log[f[x]]+1,{x,0,nn}],x] (* Geoffrey Critzer, Sep 05 2013 *)
-
seq(n)={Vec(serlaplace(1 + log(serconvol(sum(j=0, n, x^j*2^binomial(j, 2)) + O(x*x^n), (sum(j=0, n, x^j/(j!*2^binomial(j, 2))) + O(x*x^n))^2))))} \\ Andrew Howroyd, Dec 03 2018
A058872
Number of 2-colored labeled graphs with n nodes.
Original entry on oeis.org
0, 2, 12, 80, 720, 9152, 165312, 4244480, 154732800, 8005686272, 587435092992, 61116916981760, 9011561121239040, 1882834327457349632, 557257804202631217152, 233610656002563147038720, 138681207656726645785559040, 116575238610106596799428165632
Offset: 1
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 18, Table 1.5.1.
- A. Mukhopadhyay, Lupanov decoding networks, in A. Mukhopadhyay, ed., Recent Developments in Switching Theory, Ac. Press, 1971, Chap. 3, see esp. p. 82 (number of shell functions).
-
A058872 := n->add(binomial(n,k)*2^(n-k)*2^(k*(n-k)),k=0..n-1);
-
f[list_] := (Apply[Multinomial,list] * 2^((Total[list]^2 - Total[Table[list[[i]]^2, {i, 1, Length[list]}]])/2))/2!; Table[Total[Map[f, Select[Compositions[n,2], Count[#,0]==0&]]], {n, 1, 20}] (* Geoffrey Critzer, Oct 24 2011 *)
A244754
a(n) = Sum_{k=0..n} C(n,k) * (1 + 2^k)^(n-k).
Original entry on oeis.org
1, 3, 11, 51, 311, 2583, 30011, 495771, 11740271, 399511023, 19531952051, 1369534859091, 137461591250951, 19708614005005383, 4029559971566918891, 1172950335844577723211, 485515762655939377001951, 285459356061242116657495263, 238215406681004045293498284131
Offset: 0
E.g.f.: A(x) = 1 + 3*x + 11*x^2/2! + 51*x^3/3! + 311*x^4/4! + 2583*x^5/5! +...
where
A(x) = exp(x)*(1 + 2*x + 6*x^2/2! + 26*x^3/3! + 162*x^4/4! + 1442*x^5/5! +...+ A047863(n)*x^n/n! +...).
ILLUSTRATION OF INITIAL TERMS:
a(1) = (1+2^0)^1 + (1+2^1)^0 = 3;
a(2) = (1+2^0)^2 + 2*(1+2^1)^1 + (1+2^2)^0 = 11;
a(3) = (1+2^0)^3 + 3*(1+2^1)^2 + 3*(1+2^2)^1 + (1+2^3)^0 = 51;
a(4) = (1+2^0)^4 + 4*(1+2^1)^3 + 6*(1+2^2)^2 + 4*(1+2^3)^1 + (1+2^4)^0 = 311; ...
-
Table[Sum[Binomial[n,k] * (1 + 2^k)^(n-k),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jan 25 2015 *)
-
{a(n) = sum(k=0,n,binomial(n,k) * (1 + 2^k)^(n-k) )}
for(n=0,25,print1(a(n),", "))
-
/* E.g.f.: Sum_{n>=0} exp((1+2^n)*x)*x^n/n!: */
{a(n)=n!*polcoeff(sum(k=0, n, exp((1+2^k)*x +x*O(x^n))*x^k/k!), n)}
for(n=0,25,print1(a(n),", "))
-
/* O.g.f. Sum_{n>=0} x^n/(1 - (1+2^n)*x)^(n+1): */
{a(n)=polcoeff(sum(k=0, n, x^k/(1-(1+2^k)*x +x*O(x^n))^(k+1)), n)}
for(n=0,25,print1(a(n),", "))
A000685
Number of 3-colored labeled graphs on n nodes, divided by 3.
Original entry on oeis.org
1, 5, 41, 545, 11681, 402305, 22207361, 1961396225, 276825510401, 62368881977345, 22413909724518401, 12840603873823473665, 11720394922432296755201, 17037597932370037286600705
Offset: 1
- R. C. Read, personal communication.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 1..50
- S. R. Finch, Bipartite, k-colorable and k-colored graphs (3*A000685)
- S. R. Finch, Bipartite, k-colorable and k-colored graphs, June 5, 2003. [Cached copy, with permission of the author]
- R. C. Read, The number of k-colored graphs on labelled nodes, Canad. J. Math., 12 (1960), 410-414.
- R. C. Read, Letter to N. J. A. Sloane, Oct. 29, 1976
- R. P. Stanley, Acyclic orientation of graphs Discrete Math. 5 (1973), 171-178. North Holland Publishing Company.
- Eric Weisstein's World of Mathematics, k-Colorable Graph
-
c[0]:=1: for n from 1 to 30 do c[n]:=sum(binomial(n,i)*2^(i*(n-i)),i=0..n) od: a:=n->(1/3)*sum(binomial(n,j)*2^(j*(n-j))*c[j],j=0..n): seq(a(n),n=1..19);
-
a[n_] := 1/3*Sum[ 2^((i-j)*j + i*(n-i))*Binomial[n, i]*Binomial[i, j], {i, 0, n}, {j, 0, i}]; Table[ a[n], {n, 1, 14}] (* Jean-François Alcover, Dec 07 2011, after Emeric Deutsch *)
More terms from Pab Ter (pabrlos(AT)yahoo.com) and
Emeric Deutsch, May 05 2004
A221493
Number of tangled bicolored graphs on n labeled vertices.
Original entry on oeis.org
0, 0, 0, 0, 12, 120, 2460, 64680, 2323692, 111920760, 7272700860, 639739653960, 76764606923532, 12645557866982040, 2878366780307114460, 909775941009828296040, 401039212596034472197932, 247339947733328456032703160, 214013123181627427780427544060
Offset: 0
The only tangled bicolored graph on 4 vertices (up to isomorphism) consists of 2 black vertices, 2 white vertices, and 2 edges, with each black vertex joined to a different white vertex. Given 4 labels, there are 12 distinct ways of labeling the vertices, so a(4) = 1.
-
nmax = 19;
B[x_] = Sum[Exp[2^n x] x^n/n!, {n, 0, nmax}] + O[x]^nmax;
T[x_] = 2 Exp[-x] - 1 - 1/B[x] + O[x]^nmax;
CoefficientList[T[x], x] Range[0, nmax-1]! (* Jean-François Alcover, Aug 12 2018 *)
A222863
Strongly graded (3+1)-free partially ordered sets (posets) on n labeled vertices.
Original entry on oeis.org
1, 1, 3, 13, 111, 1381, 22383, 461413, 12163791, 420626821, 19880808303, 1337330559973, 130909732781391, 18649561895661061, 3830195104867879023, 1124247654215697637093, 469367653568553278229711, 278046313987470874905216901, 233462156432002170491075384943
Offset: 0
- R. P. Stanley, Enumerative Combinatorics, Volume 1. Cambridge University Press. 2nd edition, 2012. http://math.mit.edu/~rstan/ec/ec1/
For strongly graded (3+1)-free posets by height, see
A222864. For weakly graded (3+1)-free posets, see
A222865. For all strongly graded posets, see
A006860. For all (3+1)-free posets, see
A079145.
-
m = maxExponent = 19;
Psi[x_] = Sum[E^(2^n*x)*x^n/n!, {n, 0, m}] + O[x]^m;
H[x_, y_] = 1+(2x^3 - 3x^2 + (x^3 - 4x^2 + 4x)y)/(2x^2 + x + (x^2-2x-1) y);
CoefficientList[H[E^x, Psi[x]] + O[x]^m, x] Range[0, m-1]! (* Jean-François Alcover, Dec 11 2018 *)
A222865
Weakly graded (3+1)-free partially ordered sets (posets) on n labeled vertices.
Original entry on oeis.org
1, 1, 3, 19, 195, 2551, 41343, 826939, 20616795, 658486351, 28264985223, 1725711709459, 155998194920835, 21019550046219271, 4162663551546902223, 1192847436856343300779, 489879387071459457083115, 286844271719979335180726911, 238844671940165660117456403543
Offset: 0
For weakly graded (3+1)-free posets by height, see
A222866. For strongly graded (3+1)-free posets, see
A222863. For all weakly graded posets, see
A001833. For all (3+1)-free posets, see
A079145.
-
m = maxExponent = 19;
Psi[x_] = Sum[E^(2^n x) x^n/n!, {n, 0, m}] + O[x]^m;
W[x_, y_] = (1-x)y/x + (2x^3 + (x^3 - 2x^2)y)/(2x^2 + x + (x^2-2x-1) y);
CoefficientList[W[E^x, Psi[x]] + O[x]^m, x] Range[0, m-1]! (* Jean-François Alcover, Dec 11 2018 *)
A320287
a(n) = n! * [x^n] Sum_{k>=0} exp(n^k*x)*x^k/k!.
Original entry on oeis.org
1, 2, 6, 56, 2050, 318752, 252035714, 980755711616, 23647746367946754, 3088949241542073508352, 2940240000900000020000000002, 16218429504693724464229916894517248, 748528620411995327278028288988088683724802, 210422023062476527874650307058798916093350502080512
Offset: 0
-
[(&+[Binomial(n,k)*n^(k*(n-k)):k in [0..n]]): n in [0..20]]; // G. C. Greubel, Nov 04 2018
-
Join[{1}, Table[n! SeriesCoefficient[Sum[Exp[n^k x] x^k/k!, {k, 0, n}], {x, 0, n}], {n, 13}]]
Join[{1}, Table[SeriesCoefficient[Sum[x^k/(1 - n^k x)^(k + 1), {k, 0, n}], {x, 0, n}], {n, 13}]]
Join[{1}, Table[Sum[Binomial[n, k] n^(k (n - k)), {k, 0, n}], {n, 13}]]
-
for(n=0,20, print1(sum(k=0,n, binomial(n,k)*n^(k*(n-k))), ", ")) \\ G. C. Greubel, Nov 04 2018
A122801
Number of labeled bipartite graphs on 2n vertices having equal parts and no isolated vertices.
Original entry on oeis.org
1, 1, 21, 2650, 1452605, 3149738046, 26503552820514, 868081172737564500, 111606080497500509325405, 56762846667123360827351083510, 114847831981827229530824587617895286, 927685362544629192461621864598358779955500, 29976424929810726580224613882836823991388901138994
Offset: 0
-
{ A122801(n) = binomial(2*n-1,n) * sum(k=0, n, binomial(n, k) * (-1)^k * (2^(n-k)-1)^n ); }
Comments