cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 95 results. Next

A244576 Sum of all proper divisors of all positive integers <= prime(n).

Original entry on oeis.org

0, 0, 2, 7, 23, 38, 69, 89, 133, 227, 268, 397, 483, 536, 632, 821, 1018, 1125, 1355, 1511, 1633, 1890, 2077, 2406, 2906, 3150, 3263, 3509, 3680, 3960, 5026, 5319, 5854, 6003, 6909, 7130, 7761, 8345, 8681, 9381, 9986, 10351, 11456, 11771, 12212, 12481, 14128
Offset: 1

Views

Author

Omar E. Pol, Jun 30 2014

Keywords

Comments

Also sum of all proper divisors of all positive integers <= prime(n)-1.
Also zero together with the numbers that are repeated in A244049.

Crossrefs

Programs

  • PARI
    a(n) = sum(i=2, prime(n), sigma(i)-i-1); \\ Michel Marcus, Sep 29 2014

Formula

a(n) = A244049(A000040(n)-1) = A244049(A000040(n)).
a(n) ~ (Pi^2/12 - 1/2) * n^2 * log(n)^2. - Amiram Eldar, Mar 22 2024

Extensions

More terms from Michel Marcus, Sep 29 2014

A347153 Sum of all divisors, except the largest of every number, of the first n odd numbers.

Original entry on oeis.org

0, 1, 2, 3, 7, 8, 9, 18, 19, 20, 31, 32, 38, 51, 52, 53, 68, 81, 82, 99, 100, 101, 134, 135, 143, 164, 165, 182, 205, 206, 207, 248, 267, 268, 295, 296, 297, 346, 365, 366, 406, 407, 430, 463, 464, 485, 520, 545, 546, 603, 604, 605, 692, 693, 694, 735, 736, 765, 830, 855
Offset: 1

Views

Author

Omar E. Pol, Aug 20 2021

Keywords

Comments

Sum of all aliquot divisors (or aliquot parts) of the first n odd numbers.
Partial sums of the odd-indexed terms of A001065.
a(n) has a symmetric representation.

Crossrefs

Programs

  • Mathematica
    s[n_] := DivisorSigma[1, 2*n - 1] - 2*n + 1; Accumulate @ Array[s, 100] (* Amiram Eldar, Aug 20 2021 *)
  • PARI
    a(n) = sum(k=1, n, k = 2*k-1; sigma(k)-k); \\ Michel Marcus, Aug 20 2021
  • Python
    from sympy import divisors
    from itertools import accumulate
    def A346877(n): return sum(divisors(2*n-1)[:-1])
    def aupton(nn): return list(accumulate(A346877(n) for n in range(1, nn+1)))
    print(aupton(60)) # Michael S. Branicky, Aug 20 2021
    

Formula

a(n) = A001477(n-1) + A346869(n).
G.f.: (1/(1 - x)) * Sum_{k>=0} (2*k + 1) * x^(3*k + 2) / (1 - x^(2*k + 1)). - Ilya Gutkovskiy, Aug 20 2021
a(n) = (Pi^2/8 - 1)*n^2 + O(n*log(n)). - Amiram Eldar, Mar 21 2024

A380580 Irregular tetrahedron T(s,r,k) read by rows in which the slice s is an irregular triangle, itself read by rows, in which row r lists the r-th row of A237593 sandwiched between two A380579(s+1,r+1), with s >= 0; 0 <= r <= s; k >= 0. Assume that row 0 of A237593 is empty.

Original entry on oeis.org

1, 1, 2, 2, 1, 1, 1, 1, 4, 4, 3, 1, 1, 3, 2, 2, 2, 2, 5, 5, 4, 1, 1, 4, 3, 2, 2, 3, 2, 2, 1, 1, 2, 2, 7, 7, 6, 1, 1, 6, 5, 2, 2, 5, 4, 2, 1, 1, 2, 4, 3, 3, 1, 1, 3, 3, 8, 8, 7, 1, 1, 7, 6, 2, 2, 6, 5, 2, 1, 1, 2, 5, 4, 3, 1, 1, 3, 4, 3, 3, 2, 2, 3, 3, 10, 10, 9, 1, 1, 9, 8, 2, 2, 8, 7, 2, 1, 1, 2, 7, 6, 3, 1, 1, 3, 6, 5, 3, 2, 2, 3, 5
Offset: 0

Views

Author

Omar E. Pol, Jan 27 2025

Keywords

Comments

The discussion of this sequence was too long to be included here, and can be found in the attached "Discussion" text file (see the first link). - N. J. A. Sloane, Jul 31 2025

Crossrefs

See the "Discussion" text file for the cross-references.

Programs

  • Mathematica
    A237593row[n_] := Join[#, Reverse[#]] & [Table[Ceiling[(n+1)/k - (k+1)/2] + Quotient[k*(k+3) - 2*n, 2*(k+1)], {k, Quotient[Sqrt[8*n + 1] - 1, 2]}]];
    A380580slice[s_] := Table[Join[#, A237593row[r], #] & [{Quotient[3*s, 2] - r + 1}], {r, 0, s}];
    Array[A380580slice, 10, 0] (* Paolo Xausa, Aug 19 2025 *)

Extensions

Edited by N. J. A. Sloane, Jul 31 2025

A002954 Smallest number such that n-th iterate of Chowla function is 0.

Original entry on oeis.org

2, 4, 8, 15, 12, 27, 24, 36, 90, 96, 245, 288, 368, 676, 1088, 2300, 1596, 1458, 3344, 3888, 5360, 8895, 11852, 25971, 23360, 38895, 35540, 35595, 36032, 53823, 47840, 62055, 59360, 83391, 70784, 128079, 145668, 349299, 254540, 327495, 293744, 328335, 167664
Offset: 1

Views

Author

Keywords

Comments

Chowla's function (A048050) = sum of divisors of n except 1 and n.
a(83) > 10^10. - Donovan Johnson, Feb 15 2013
The first 35 terms were found by Lal and Forbes (1971). - Amiram Eldar, Mar 09 2024

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A048050.

Programs

  • Mathematica
    chowla[n_] := DivisorSigma[1, n] - 1 - n; chowlaSeq[n_] := Module[{m = n, cnt = 0, seq = {}}, While[m > 0 && ! MemberQ[seq, m], AppendTo[seq, m]; m = chowla[m]; cnt++]; If[m == 0, AppendTo[seq, m]]; seq]; nn = 20; t = Table[0, {nn}]; left = nn; n = 1; While[left > 0, n++; cSeq = chowlaSeq[n]; c = Length[cSeq] - 1; If[cSeq[[-1]] == 0 && c <= nn && t[[c]] == 0, t[[c]] = n; left--]]; t (* T. D. Noe, Dec 29 2011 *)

Extensions

a(31)-a(43) from T. D. Noe, Dec 29 2011

A053246 First differences of chowla(n).

Original entry on oeis.org

0, 0, 2, -2, 5, -5, 6, -3, 4, -7, 15, -15, 9, -1, 6, -14, 20, -20, 21, -11, 3, -13, 35, -30, 10, -3, 15, -27, 41, -41, 30, -16, 5, -7, 42, -54, 21, -5, 33, -49, 53, -53, 39, -7, -7, -25, 75, -68, 35, -22, 25, -45, 65, -49, 47, -41, 9, -31, 107, -107, 33, 7, 22, -44, 59, -77, 57, -31
Offset: 1

Views

Author

Asher Auel, Jan 10 2000

Keywords

Comments

Second differences give A053223, for n>1.
If the first term is changed to 1, this is also the first differences of A001065. - N. J. A. Sloane, Jan 17 2023

Crossrefs

Cf. also A001065.

Programs

  • Magma
    [0] cat [DivisorSigma(1,n+1) - DivisorSigma(1,n) - 1: n in [2..100]]; // G. C. Greubel, Sep 03 2018
    
  • Maple
    with(numtheory): seq( sigma(i+1) - sigma(i) - 1, i=2..100); # for n>1
  • Mathematica
    Chowlan[n_] := If[n == 1, 0, DivisorSigma[1, n] - n - 1]; Table[Chowlan[n + 1] - Chowlan[n], {n, 1, 100}] (* G. C. Greubel, Sep 03 2018 *)
    Differences[Join[{0},Table[DivisorSigma[1,n]-n-1,{n,2,100}]]] (* Harvey P. Dale, Dec 19 2022 *)
  • PARI
    concat([0], vector(100, n, n++; sigma(n+1) - sigma(n) -1)) \\ G. C. Greubel, Sep 03 2018

Formula

a(n) = A053222(n) - 1, for n>1

A054019 Square roots of A054018.

Original entry on oeis.org

3, 1, 4, 3, 5, 4, 5, 7, 4, 1, 8, 11, 6, 9, 8, 13, 8, 6, 10, 15, 8, 6, 11, 6, 13, 7, 19, 15, 1, 12, 21, 21, 12, 16, 20, 14, 8, 21, 1, 12, 19, 8, 20, 21, 27, 8, 14, 12, 27, 10, 29, 27, 5, 20, 16, 35, 10, 27, 35, 31, 30, 29, 3, 12, 28, 5, 1, 35, 26, 10, 20, 37, 12, 33, 18, 43, 43, 45, 22
Offset: 1

Views

Author

Asher Auel, Jan 19 2000

Keywords

Crossrefs

Programs

  • Mathematica
    chowla[n_] := DivisorSigma[1, n] - n - 1; aQ[n_] := (c = chowla[n]) > 0 && IntegerQ@Sqrt@Mod[c, n]; Sqrt @ Mod[chowla[#], #] & /@ Select[Range[1000], aQ] (* Amiram Eldar, Aug 28 2019 *)

A054020 Chowla's function of n is not divisible by the number of proper divisors of n.

Original entry on oeis.org

6, 9, 10, 15, 16, 20, 21, 22, 25, 28, 30, 33, 34, 36, 39, 42, 44, 45, 46, 48, 49, 50, 51, 54, 55, 57, 58, 60, 64, 68, 69, 70, 72, 75, 76, 78, 80, 81, 82, 84, 85, 87, 91, 93, 94, 96, 98, 99, 100, 102, 105, 106, 108, 111, 114, 115, 116, 117, 118, 120, 121, 123, 124, 126
Offset: 1

Views

Author

Asher Auel, Jan 19 2000

Keywords

Comments

Chowla's function (A048050) = sum of divisors of n except 1 and n.

Crossrefs

Complement is A054021.

Programs

  • Maple
    with(numtheory):
    [seq(`if`((sigma(i)-i-1) mod (tau(i)-1) <> 0,i,print( )),i=2..500)];
  • Mathematica
    Select[Range[2,150],!Divisible[DivisorSigma[1,#]-#-1,DivisorSigma[ 0,#]- 1]&] (* Harvey P. Dale, May 27 2014 *)

A054021 Numbers n such that Chowla's function of n is divisible by the number of proper divisors of n.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 11, 12, 13, 14, 17, 18, 19, 23, 24, 26, 27, 29, 31, 32, 35, 37, 38, 40, 41, 43, 47, 52, 53, 56, 59, 61, 62, 63, 65, 66, 67, 71, 73, 74, 77, 79, 83, 86, 88, 89, 90, 92, 95, 97, 101, 103, 104, 107, 109, 110, 112, 113, 119, 122, 125, 127, 128, 131, 134, 136
Offset: 1

Views

Author

Asher Auel, Jan 19 2000

Keywords

Comments

Chowla's function (A048050) = sum of divisors of n except 1 and n.

Crossrefs

Complement is A054020.

Programs

  • Maple
    with(numtheory):
    [seq(`if`((sigma(i)-i-1) mod (tau(i)-1)=0,i,print( )),i=2..1000)];
  • Mathematica
    Select[Range[2,150],Divisible[DivisorSigma[1,#]-1-#,DivisorSigma[ 0,#]-1]&] (* Harvey P. Dale, Aug 13 2018 *)

A054023 Chowla function of n is not divisible by the number of divisors of n.

Original entry on oeis.org

4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 22, 24, 25, 26, 28, 30, 33, 34, 38, 40, 42, 44, 45, 46, 48, 49, 52, 54, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 76, 77, 78, 80, 81, 82, 84, 85, 86, 88, 90, 92, 93, 94, 96, 99, 100, 102, 104, 105, 106, 108, 110, 112, 114
Offset: 1

Views

Author

Asher Auel, Jan 19 2000

Keywords

Comments

Chowla's function (A048050) = sum of divisors of n except 1 and n.

Crossrefs

Complement is A054022.

Programs

  • Maple
    with(numtheory):
    [seq(`if`((sigma(i)-i-1) mod tau(i) <> 0,i,print( )),i=1..1000)];
  • Mathematica
    cfQ[n_]:=!Divisible[DivisorSigma[1,n]-1-n,DivisorSigma[0,n]]; Select[ Range[ 150],cfQ] (* Harvey P. Dale, Jul 22 2014 *)

A069896 GCD of consecutive values of Chowla's function.

Original entry on oeis.org

0, 0, 2, 2, 5, 5, 6, 3, 1, 7, 15, 15, 9, 1, 2, 14, 20, 20, 21, 1, 1, 13, 35, 5, 5, 3, 3, 27, 41, 41, 30, 2, 1, 1, 6, 54, 21, 1, 1, 49, 53, 53, 39, 1, 1, 25, 75, 1, 7, 2, 5, 45, 65, 1, 1, 1, 1, 31, 107, 107, 33, 1, 2, 2, 1, 77, 57, 1, 1, 73, 122, 122, 39, 3, 3, 9, 1, 89, 105, 3, 1, 43
Offset: 1

Views

Author

Labos Elemer, Apr 10 2002

Keywords

Examples

			Chowla's function values from 92 to 96 are 75,34,49,24,155: successive values are relatively primes.
		

Crossrefs

Programs

  • Mathematica
    m = 100; s = Array[If[# == 1, 0, DivisorSigma[1, #] - # - 1] &, {m}]; GCD[s[[1 ;; m - 1]], s[[2 ;; m]]] (* Amiram Eldar, Aug 28 2019 *)

Formula

a(n) = gcd(sigma(n+1)-(n+1)-1, sigma(n)-n-1), for n > 1.

Extensions

a(1) corrected by Amiram Eldar, Aug 28 2019
Previous Showing 51-60 of 95 results. Next