cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 48 results. Next

A118939 Primes p such that (p^2+3)/4 is prime.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 29, 31, 41, 43, 67, 83, 101, 109, 139, 151, 157, 179, 181, 199, 211, 223, 239, 263, 277, 283, 307, 311, 337, 347, 353, 379, 389, 419, 431, 463, 491, 557, 577, 587, 619, 659, 673, 739, 757, 797, 809, 811, 829, 853, 907, 911, 953, 991, 1051
Offset: 1

Views

Author

T. D. Noe, May 06 2006

Keywords

Comments

For all primes q>2, we have q=4k+-1 for some k, which makes it easy to show that 4 divides q^2+3. Similar sequences, with p and (p^2+a)/b both prime, are A048161, A062324, A062326, A062718, A109953, A110589, A118915, A118918, A118940, A118941 and A118942.

Programs

  • Mathematica
    Select[Prime[Range[200]],PrimeQ[(#^2+3)/4]&]

A341211 Smallest prime p such that (p^(2^n) + 1)/2 is prime.

Original entry on oeis.org

3, 3, 3, 13, 3, 3, 3, 113, 331, 3631, 827, 3109, 4253, 7487, 71
Offset: 0

Views

Author

Jon E. Schoenfield, Feb 06 2021

Keywords

Comments

Expressions of the form m^j + 1 can be factored (e.g., m^3 + 1 = (m + 1)*(m^2 - m + 1)) for any positive integer j except when j is a power of 2, so (p^j + 1)/2 for prime p cannot be prime unless j is a power of 2.
a(12) <= 4253, a(13) <= 7487, a(14) <= 71. - Daniel Suteu, Feb 07 2021
a(13) > 2500 and a(14) = 71. - Jinyuan Wang, Feb 07 2021

Examples

			No term is smaller than 3 (since 2 is the only smaller prime, and (2^(2^n) + 1)/2 is not an integer).
(3^(2^0) + 1)/2 = (3^1 + 1)/2 = (3 + 1)/2 = 4/2 = 2 is prime, so a(0)=3.
(3^(2^1) + 1)/2 = (3^2 + 1)/2 = 5 is prime, so a(1)=3.
(3^(2^2) + 1)/2 = (3^4 + 1)/2 = 41 is prime, so a(2)=3.
(3^(2^3) + 1)/2 = (3^8 + 1)/2 = 3281 = 17*193 is not prime, nor is (p^8 + 1)/2 for any other prime < 13, but (13^8 + 1)/2 = 407865361 is prime, so a(3)=13.
		

Crossrefs

Cf. A093625 and A171381 (both for when p=3).

Programs

  • Alpertron
    x=3;x=N(x);NOT IsPrime((x^8192+1)/2);N(x)
    # Martin Ehrenstein, Feb 08 2021
    
  • PARI
    a(n) = my(p=3); while (!isprime((p^(2^n) + 1)/2), p=nextprime(p+1)); p; \\ Michel Marcus, Feb 07 2021
    
  • Python
    from sympy import isprime, nextprime
    def a(n):
      p, pow2 = 3, 2**n
      while True:
        if isprime((p**pow2 + 1)//2): return p
        p = nextprime(p)
    print([a(n) for n in range(9)]) # Michael S. Branicky, Mar 03 2021

Extensions

a(11) from Daniel Suteu, Feb 07 2021
a(12) from Jinyuan Wang, Feb 07 2021
a(13)-a(14), using Dario Alpern's integer factorization calculator and prior bounds, from Martin Ehrenstein, Feb 08 2021

A341230 Primes p such that (p^128 + 1)/2 is prime.

Original entry on oeis.org

113, 499, 2081, 2287, 5807, 6151, 7823, 9203, 9629, 11069, 11497, 13463, 16987, 17891, 18049, 19889, 24091, 26981, 27259, 27953, 28319, 28597, 31219, 35899, 39047, 41381, 41603, 43403, 44839, 45343, 49529, 50753, 50857, 55079, 60793, 62219, 66721, 72679, 76771
Offset: 1

Views

Author

Jon E. Schoenfield, Feb 07 2021

Keywords

Comments

Expressions of the form m^j + 1 can be factored (e.g., m^3 + 1 = (m + 1)*(m^2 - m + 1)) for any positive integer j except when j is a power of 2, so (p^j + 1)/2 for prime p cannot be prime unless j is a power of 2. A005383, A048161, A176116, A340480, A341210, A341224, A341229, and this sequence list primes of the form (p^j + 1)/2 for j=2^0=1, j=2^1=2, ..., j=2^7=128, respectively.

Examples

			(3^128 + 1)/2 = 5895092288869291585760436430706259332839105796137920554548481 = 257*275201*138424618868737*3913786281514524929*153849834853910661121, so 3 is not a term.
(113^128 + 1)/2 = 3111793506...0421698561 (a 263-digit number) is prime, so 113 is a term. Since 113 is the smallest prime p such that (p^128 + 1)/2 is prime, it is a(1) and is also A341211(7).
		

Crossrefs

Primes p such that (p^(2^k) + 1)/2 is prime: A005383 (k=0), A048161 (k=1), A176116 (k=2), A340480 (k=3), A341210 (k=4), A341224 (k=5), A341229 (k=6), (this sequence) (k=7).
Cf. A341211 (Smallest prime p such that (p^(2^n) + 1)/2 is prime).

Programs

  • PARI
    isok(p) = (p>2) && isprime(p) && ispseudoprime((p^128 + 1)/2); \\ Michel Marcus, Feb 07 2021

A118941 Primes p such that (p^2-5)/4 is prime.

Original entry on oeis.org

5, 7, 11, 13, 17, 19, 23, 31, 41, 43, 53, 61, 71, 79, 83, 89, 97, 101, 107, 109, 113, 131, 137, 167, 173, 179, 193, 229, 241, 251, 263, 269, 277, 281, 283, 307, 311, 317, 349, 353, 373, 383, 419, 431, 439, 461, 463, 467, 563, 571, 577, 593, 607, 613, 619, 647
Offset: 1

Views

Author

T. D. Noe, May 06 2006

Keywords

Comments

For all primes q>2, we have q=4k+-1 for some k, which makes it easy to show that 4 divides q^2-5. Similar sequences, with p and (p^2+a)/b both prime, are A048161, A062324, A062326, A062718, A109953, A110589, A118915, A118918, A118939, A118940 and A118942.

Programs

  • Mathematica
    Select[Prime[Range[200]],PrimeQ[(#^2-5)/4]&]

A118942 Primes p such that (p^2-13)/12 is prime.

Original entry on oeis.org

7, 13, 17, 19, 23, 31, 37, 41, 53, 67, 71, 73, 89, 103, 107, 113, 131, 139, 157, 163, 181, 199, 211, 233, 239, 257, 269, 283, 307, 311, 337, 359, 373, 379, 401, 419, 463, 487, 491, 499, 509, 521, 577, 593, 607, 617, 631, 647, 653, 683, 701, 733, 761, 769, 787
Offset: 1

Views

Author

T. D. Noe, May 06 2006

Keywords

Comments

For all primes q>3, we have q=6k+-1 for some k, which makes it easy to show that 12 divides q^2-13. Similar sequences, with p and (p^2+a)/b both prime, are A048161, A062324, A062326, A062718, A109953, A110589, A118915, A118918, A118939, A118940 and A118941.

Programs

  • Mathematica
    Select[Prime[Range[200]],PrimeQ[(#^2-13)/12]&]

A154428 Primes of the form 50n^2 + 10n + 1.

Original entry on oeis.org

61, 1301, 1861, 2521, 5101, 7321, 8581, 9941, 14621, 16381, 20201, 24421, 26681, 34061, 36721, 51521, 68821, 76441, 97241, 101701, 106261, 110921, 135721, 163021, 168781, 199081, 205441, 218461, 252761, 282001, 304981, 312841, 337021, 353641
Offset: 1

Views

Author

Vincenzo Librandi, Jan 09 2009

Keywords

Comments

Subsequence of A027862 associated with the values of A027861 that are multiples of 5. [R. J. Mathar, Jan 12 2009]

Crossrefs

Programs

  • GAP
    Filtered(List([1..100],n->50*n^2+10*n+1),IsPrime); # Muniru A Asiru, Apr 25 2019
  • Magma
    [a: n in [0..100] | IsPrime(a) where a is 50*n^2 + 10*n + 1]; // Vincenzo Librandi, Jul 23 2012
    
  • Maple
    select(isprime,[50*n^2+10*n+1$n=1..100])[]; # Muniru A Asiru, Apr 25 2019
  • Mathematica
    Select[Table[50n^2+10n+1,{n,0,200}],PrimeQ] (* Vincenzo Librandi, Jul 23 2012 *)
  • PARI
    for (n=0, 100, if (isprime (k=50*n^2+10*n+1), print1 (k, ", "))); \\ Vincenzo Librandi, Jul 23 2012
    

Extensions

Replaced 13721 by 135721 - R. J. Mathar, Jan 12 2009

A284034 Primes p such that (p^2 - 3)/2 and (p^2 + 1)/2 are twin primes.

Original entry on oeis.org

3, 5, 11, 19, 29, 79, 101, 349, 409, 449, 521, 569, 571, 661, 739, 991, 1091, 1129, 1181, 1459, 1489, 1531, 1901, 2269, 2281, 2341, 2351, 2389, 2549, 2659, 2671, 2719, 2729, 2731, 3109, 4049, 4349, 5279, 5431, 5471, 5531, 5591, 5669, 6329, 6359, 6871, 7559, 7741
Offset: 1

Views

Author

Giuseppe Coppoletta, Mar 19 2017

Keywords

Comments

Primes which correspond to the short leg of an integral right triangle whose hypotenuse is part of a twin prime pair.
Each term p of the sequence must be part of a Pythagorean triple of the form {p, (p^2 - 1)/2, (p^2 + 1)/2} corresponding to {a(n), A284035(n) - 1, A284035(n)}.

Examples

			The prime p = 79 is in the sequence because (p^2-3)/2 = 3119 and (p^2+1)/2 = 3121 are twin primes. Remark that {79, 3120, 3121} is a Pythagorean triple.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@ Range[10^3], Function[p, Times @@ Boole@ Map[PrimeQ[(p^2 + #)/2 ] &, {-3, 1}] == 1]] (* Michael De Vlieger, Mar 20 2017 *)
    Select[Prime[Range[1000]],AllTrue[{(#^2-3)/2,(#^2+1)/2},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 04 2017 *)
  • PARI
    isok(p) = isprime(p) && isprime((p^2-3)/2) && isprime((p^2+1)/2); \\ Michel Marcus, Mar 31 2017
  • Sage
    [p for p in prime_range(10000) if is_prime((p^2-3)//2) and is_prime((p^2+1)//2)]
    

A340482 Numbers that are the product of two not necessarily distinct odd primes p*q with the property that (p*q+1)/2 and (p+q)/2 are primes.

Original entry on oeis.org

9, 21, 25, 33, 57, 85, 93, 121, 133, 145, 177, 205, 213, 217, 253, 361, 393, 445, 553, 565, 633, 697, 793, 817, 841, 865, 913, 933, 973, 1137, 1285, 1345, 1417, 1437, 1465, 1477, 1513, 1537, 1717, 1765, 1837, 1857, 1893, 2101, 2173, 2245, 2305, 2517, 2577, 2581, 2605, 2641, 2653
Offset: 1

Views

Author

Hartmut F. W. Hoft, Jan 09 2021

Keywords

Comments

For the squares p^2 in this sequence the area of the central region of the three regions in the symmetric representation of sigma(p^2) is equal to p.
p^2 is a term iff p is in A048161, and this subsequence of p^2 is A263951. - Bernard Schott, Jan 10 2021

Examples

			a(1) = 9 = 3*3 is the first number for which SRS(a(1)) consists of three regions ( 5, 3, 5 ).
a(6) = 85 = 5*17, both (1+85)/2 = 43 and (5+17)/2 = 11 are primes, and SRS(a(6)) consists of the 4 regions ( 43, 11, 11, 43 ).
		

Crossrefs

Union of A128283 and A263951.
Subsequence of A046315 (all odd semiprimes).

Programs

  • Mathematica
    dQ[s_] := Module[{d=Divisors[s]}, AllTrue[Map[(d[[#]]+d[[-#]])/2&, Range[Length[d]/2]], PrimeQ]]
    a340482[n_] := Select[Range[n], PrimeOmega[#]==2&&dQ[#]&]
    a340482[2700]
  • PARI
    isok(m) = if ((m % 2) && (bigomega(m)==2), if (issquare(m), isprime((m+1)/2), my(p=factor(m)[1,1], q=factor(m)[2,1]); isprime((p*q+1)/2) && isprime((p+q)/2))); \\ Michel Marcus, Jan 10 2021

A341234 Primes p such that (p^256 + 1)/2 is prime.

Original entry on oeis.org

331, 1783, 2591, 2791, 7127, 8443, 9007, 9859, 10133, 10883, 10889, 11621, 12101, 13183, 15391, 17737, 19309, 19571, 21863, 24043, 24203, 31159, 32717, 33377, 34267, 35023, 35531, 38177, 39929, 42397, 43499, 46867, 49499, 49943, 50087, 51137, 53101, 53377
Offset: 1

Views

Author

Jon E. Schoenfield, Feb 07 2021

Keywords

Comments

Expressions of the form m^j + 1 can be factored (e.g., m^3 + 1 = (m + 1)*(m^2 - m + 1)) for any positive integer j except when j is a power of 2, so (p^j + 1)/2 for prime p cannot be prime unless j is a power of 2. A005383, A048161, A176116, A340480, A341210, A341224, A341229, A341230, and this sequence list primes of the form (p^j + 1)/2 for j=2^0=1, j=2^1=2, ..., j=2^8=256, respectively.

Examples

			(3^256 + 1)/2 = 6950422618...4449717761 (a 122-digit number) = 12289 * 8972801 * 891206124520373602817 * (a 90-digit prime), so 3 is not a term.
(331^256 + 1)/2 = 5955749334...7416010241 (a 645-digit number) is prime, so 331 is a term. Since 331 is the smallest prime p such that (p^256 + 1)/2 is prime, it is a(1) and is also A341211(8).
		

Crossrefs

Primes p such that (p^(2^k) + 1)/2 is prime: A005383 (k=0), A048161 (k=1), A176116 (k=2), A340480 (k=3), A341210 (k=4), A341224 (k=5), A341229 (k=6), A341230 (k=7), (this sequence) (k=8).
Cf. A341211 (Smallest prime p such that (p^(2^n) + 1)/2 is prime).

Programs

  • Mathematica
    Select[Range[20000], PrimeQ[#] && PrimeQ[(#^256 + 1)/2] &] (* Amiram Eldar, Feb 07 2021 *)

A356743 Numbers k such that k and k+2 both have exactly 6 divisors.

Original entry on oeis.org

18, 50, 242, 243, 423, 475, 603, 637, 722, 845, 925, 1682, 1773, 2007, 2523, 2525, 2527, 3123, 3175, 3177, 4203, 4475, 4525, 4923, 5823, 6725, 6811, 6962, 7299, 7442, 7675, 8425, 8957, 8973, 9457, 9925, 10051, 10082, 10467, 11673, 11709, 12427, 12482, 12591, 13023, 13075
Offset: 1

Views

Author

Jianing Song, Aug 25 2022

Keywords

Comments

If an even number has exactly 6 divisors, then it is of the form 32, 4*p or 2*p^2 for an odd prime p. Note that 4*p + 2 = 2*q^2 is impossible since q^2 - 1 is divisible by 24 for prime q >= 5. As a result, if k is an even term, then it is of the form 2*p^2 such that (p^2+1)/2 is a prime (p is in A048161).

Examples

			50 is a term since 50 and 52 both have 6 divisors.
		

Crossrefs

Cf. A048161.
Numbers k such that k and k+2 both have exactly m divisors: A001359 (m=2), A356742 (m=4), this sequence (m=6), A356744 (m=8).
Cf. also A049103 (numbers k such that k and k+1 both have exactly 6 divisors).

Programs

  • PARI
    isA356743(n) = numdiv(n)==6 && numdiv(n+2)==6
Previous Showing 21-30 of 48 results. Next