cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-48 of 48 results.

A281575 Numbers k such that (d^2 + (k/d)^2)/2 is prime for all divisors d of k.

Original entry on oeis.org

3, 5, 11, 15, 19, 29, 35, 39, 51, 59, 61, 65, 69, 71, 79, 85, 95, 101, 131, 139, 141, 145, 159, 181, 199, 205, 209, 221, 231, 271, 299, 309, 329, 349, 371, 379, 391, 409, 415, 449, 461, 471, 519, 521, 535, 545, 559, 569, 571, 581, 631, 641, 649, 661, 685, 689, 739, 745, 751, 779, 799, 815, 821, 861
Offset: 1

Views

Author

Robert Israel and Thomas Ordowski, Jan 24 2017

Keywords

Comments

All terms are odd and squarefree.
Generalized Bunyakovsky conjecture implies for any odd prime p there are infinitely many terms of the form p*q where q is prime.

Examples

			15 is a member because (1^2 + 15^2)/2 = 113 and (3^2 + 5^2)/2 = 17 are prime.
		

Crossrefs

Contains A048161. Contained in A281505.

Programs

  • Maple
    filter:= n -> andmap(d -> isprime((d^2 + (n/d)^2)/2), numtheory:-divisors(n)):
    select(filter, [seq(i,i=1..3000, 2)]);
  • Mathematica
    pdnQ[n_]:=Module[{divs=Divisors[n]},AllTrue[(#^2+(n/#)^2)/2&/@ divs, PrimeQ]]; Select[Range[1000],pdnQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Feb 12 2017 *)
  • PARI
    isp(q) = (denominator(q)==1) && isprime(q);
    isok(n) = {fordiv(n, d, if (!isp((d^2 + (n/d)^2)/2), return(0));); return (1);} \\ Michel Marcus, Dec 11 2017

A334802 Positive integers of the form x^4 - y^4 that have exactly 4 divisors.

Original entry on oeis.org

15, 65, 671, 3439, 12209, 102719, 113521, 178991, 246559, 515201, 1124111, 1342879, 2964961, 3940399, 9951391, 21254449, 27220159, 34209169, 45259649, 48986321, 70710641, 92110289, 93084991, 125620111, 131687681, 144402721, 201792079, 211782751, 276694241
Offset: 1

Views

Author

C. Kenneth Fan, May 12 2020

Keywords

Comments

If a(n) = pq, where p > q are both prime, then p is the hypotenuse and q is a leg of a primitive Pythagorean triple. (x^4-y^4 = (x^2+y^2)(x+y)(x-y), hence x-y=1 and x^2+y^2 and x+y are both prime. Note that x^2+y^2 can never be (x+y)^2 so a(n) is never the cube of a prime.)

Examples

			2^4 - 1^4 = 15 = 3*5 and (3, 4, 5) is a Pythagorean triple, so 15 is a term.
6^4 - 5^4 = 671 = 11*61 and (11, 60, 61) is a Pythagorean triple, so 671 is a term.
		

Crossrefs

Cf. A068501.
Intersection of A030513 and A147857.

Programs

  • Maple
    f:= proc(y) if isprime(2*y+1) and isprime(2*y^2 + 2*y+1) then (2*y+1)*(2*y^2+2*y+1) fi end proc:
    map(f, [$1..1000]); # Robert Israel, Jun 16 2020
  • Mathematica
    Select[(#^4 - (#-1)^4) & /@ Range[420], DivisorSigma[0, #] == 4 &] (* Giovanni Resta, May 12 2020 *)

Formula

a(n) = (b(n)+1)^4 - b(n)^4 with b(n)=A068501(n).
a(n) = A048161(n)*A067756(n).

A340865 Primes p such that (p^2 + 1)/2 and 2*p^2 - 1 are also prime.

Original entry on oeis.org

3, 11, 59, 181, 199, 379, 409, 571, 739, 1039, 1439, 2239, 2269, 2351, 2381, 2671, 2719, 2789, 3049, 3529, 4021, 4201, 4721, 4999, 5431, 5531, 5839, 6329, 6619, 8329, 9241, 9419, 9631, 9689, 10151, 11329, 11551, 12071, 12421, 13339, 14489, 15091, 17419, 18301
Offset: 1

Views

Author

Jon E. Schoenfield, Jan 24 2021

Keywords

Comments

Intersection of A048161 and A106483.
How many triangular numbers with 6 divisors (A292989) can be divisible by the same squared prime p^2?
The k-th triangular number T(k) = A000217(k) = k*(k+1)/2 can be written as the product of two coprime factors A and B where A=k and B=(k+1)/2 for odd k, A=k/2 and B=k+1 for even k. If a triangular number has 6 divisors, then it is of the form p^2*q where p and q are distinct primes. We can identify four cases:
Case 1: A = k = p^2 and B = (k+1)/2 = q, so q = (p^2 + 1)/2; solutions occur at primes p in A048161.
Case 2: A = k = q and B = (k+1)/2 = p^2, so 2*p^2 - 1 = q; solutions occur at primes p in A106483.
Case 3: A = k/2 = p^2 and B = k+1 = q. In this case, 2*p^2 + 1 = q. For p = 2, we would get q = 9 (nonprime), so p must be odd. If prime p > 3 (so q > 19), we have p^2 == 1 (mod 3), so q == 0 (mod 3), hence nonprime. So the only solution for this case occurs at p=3, q=19, t = 3^2*19 = 171.
Case 4: A = k/2 = q and B = k+1 = p^2. In this case, 2*q + 1 = p^2, so p is odd, but then p^2 == 1 (mod 8), so q == 0 (mod 4), hence q is not prime: no solutions exist.
Since Case 4 has no solutions, at most three triangular numbers with 6 divisors can be divisible by the same squared prime p^2; Case 3 has a solution only at p=3 and, in fact, there are three triangular numbers with 6 divisors that are divisible by 3^2: t = 3^2*5 = 45 = T(9), t = 3^2*17 = 153 = T(17), and 3^2*19 = 171 = T(18).
For all primes p > 3, then, at most two triangular numbers with 6 divisors are divisible by p^2; this sequence (after the initial term, 3) lists the primes p such that p^2 divides exactly two triangular numbers that have 6 divisors.

Examples

			Both (3^2 + 1)/2 = 5 and 2*3^2 - 1 = 17 are prime, so 3 is in the sequence.
(5^2 + 1)/2 = 13 is prime, but 2*5^2 - 1 = 49 = 7^2 is not prime, so 5 is not in the sequence.
(7^2 + 1)/2 = 25 is not prime, so even though 2*7^2 - 1 = 97 is prime, 7 is not in the sequence.
Neither (23^2 + 1)/2 = 265 = 5*53 nor 2*23^2 - 1 = 1057 = 7*151 is prime, so 23 is not in the sequence.
		

Crossrefs

Programs

  • PARI
    isok(p) = (p>2) && isprime(p) && isprime((p^2+1)/2) && isprime(2*p^2-1); \\ Michel Marcus, Jan 25 2021

A341264 Primes p such that (p^512 + 1)/2 is prime.

Original entry on oeis.org

3631, 5113, 10651, 12391, 13999, 22093, 34687, 38713, 38959, 39199, 39679, 44879, 51229, 57389, 58757, 59651, 60331, 61543, 63389, 64483, 72931, 77023, 80369, 91639, 100787, 115679, 119551, 120713, 121727, 122299, 132109, 135599, 140221, 143387, 143873, 145753
Offset: 1

Views

Author

Jon E. Schoenfield, Feb 07 2021

Keywords

Comments

Expressions of the form m^j + 1 can be factored (e.g., m^3 + 1 = (m + 1)*(m^2 - m + 1)) for any positive integer j except when j is a power of 2, so (p^j + 1)/2 for prime p cannot be prime unless j is a power of 2. A005383, A048161, A176116, A340480, A341210, A341224, A341229, A341230, A341234, and this sequence list primes of the form (p^j + 1)/2 for j=2^0=1, j=2^1=2, ..., j=2^9=512, respectively.

Examples

			(3^512 + 1)/2 = 9661674916...6218270721 (a 244-digit number) = 134382593 * 22320686081 * 12079910333441 * 100512627347897906177 * 2652879528...2021744641 (a 193-digit composite number), so 3 is not a term.
(3631^512 + 1)/2 = 2706508826...0763924481 (an 1823-digit number) is prime, so 3631 is a term. Since 3631 is the smallest prime p such that (p^512 + 1)/2 is prime, it is a(1) and is also A341211(9).
		

Crossrefs

Primes p such that (p^(2^k) + 1)/2 is prime: A005383 (k=0), A048161 (k=1), A176116 (k=2), A340480 (k=3), A341210 (k=4), A341224 (k=5), A341229 (k=6), A341230 (k=7), A341234 (k=8), (this sequence) (k=9).
Cf. A341211 (Smallest prime p such that (p^(2^n) + 1)/2 is prime).

A382669 Even numbers m such that both p = m^2 + 1 and q = (p^2 + 1)/2 are primes.

Original entry on oeis.org

2, 10, 150, 160, 230, 270, 400, 890, 910, 920, 1060, 1430, 1550, 1970, 2700, 2960, 3280, 3290, 3520, 3660, 4140, 4330, 4510, 4700, 4780, 4850, 4920, 5180, 5360, 5500, 5560, 5620, 5880, 5960, 6220, 6460, 6980, 7160, 7190, 7520, 7550, 7820, 9630, 9760, 9900
Offset: 1

Views

Author

Ya-Ping Lu, Apr 24 2025

Keywords

Comments

Except 2, all terms are divisible by 10, and p-1 and q-1 are divisible by 100.
Numbers m such that p = m^2+1 and p + m^4/2 are both prime. - Chai Wah Wu, May 01 2025

Examples

			10 is a term because both 10^2 + 1 = 101 and (101^2 + 1)/2 = 5101 are primes.
		

Crossrefs

Programs

  • Maple
    filter:= proc(m) local p;
      p:= m^2 + 1;
      isprime(p) and isprime((p^2+1)/2)
    end proc:
    select(filter, [2,seq(i,i=10..10000,10)]); # Robert Israel, May 02 2025
  • Mathematica
    Select[2*Range[5000], PrimeQ[#^2 + 1] && PrimeQ[#^4/2 + #^2 + 1] &] (* Amiram Eldar, Apr 24 2025 *)
  • Python
    from sympy import isprime
    for n in range(2, 10000, 2): x = n*n + 1; ct = 0; print(n, end = ', ') if isprime(x) and isprime((x*x + 1)//2) else 0
    
  • Python
    from itertools import count, islice
    from sympy import isprime
    def A382669_gen(): # generator of terms
        yield 2
        yield from filter(lambda m: isprime(p:=m**2+1) and isprime(p+(m**4>>1)),(10*k for k in count(1)))
    A382669_list = list(islice(A382669_gen(),45)) # Chai Wah Wu, May 02 2025

A174885 Prime hypotenuses c with concatenation p = c//a//b a prime number.

Original entry on oeis.org

29, 409, 461, 661, 929, 1249, 1289, 1381, 1801, 1901, 2081, 2609, 2621, 2749, 3041, 3301, 3881, 5309, 5701, 6421, 6481, 6521, 6529, 7349, 7489, 7789, 8641, 8849, 9349, 9629, 9649, 9689, 9829, 10321, 10709, 10861, 12841, 14321, 14561, 15061, 16661
Offset: 1

Views

Author

Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 01 2010

Keywords

Comments

See comments in A174825
c is the prime hypotenuse c, i. e. c of a primitive Pythagorean triple: a^2 + b^2 = c^2

Examples

			p = c//a//b: 292021, 409120391, 461380261, 661300589, 929920129, 1249960799, 12895601161,
13811020931, 18011680649, 19011820549, 208116401281, 260918801809, 262111002379,
27492580949, 30414403009, 330129401501, 388123603081, 53095300309, 570122205251
29^2=20^2+21^2, 409^2=120^2+391^2, 461^2=380^2+261^2,
661^2=300^2+589^2, 929^2=920^2+129^2, 1249^2=960^2+799^2,
1289^2=560^2+1161^2,1381^2=1020^2+931^2, 1801^2=1680^2+649^2,
1901^2=1820^2+549^2, 2081^2=1640^2+1281^2, 2609^2=1880^2+1809^2,
2621^2=1100^2+2379^2, 2749^2=2580^2+949^2, 3041^2=440^2+3009^2,
3301^2=2940^2+1501^2, 3881^2=2360^2+3081^2, 5309^2=5300^2+309^2,
5701^2=2220^2+5251^2
		

References

  • W. W. R. Ball, H. S. M. Coxeter: Mathematical Recreations and Essays, New York: Dover, 1987
  • L. E. Dickson: "Rational Right Triangles", ch. 4 in History of the Theory of numbers, vol. II, Dover Publications 2005
  • W. Sierpinski: Pythagorean Triangles, Mineola, NY, Dover Publications, Inc, 2003

Crossrefs

Extensions

More terms from Zak Seidov, Apr 04 2010

A176945 Semiprimes s such that r=(s^2+1)/2 is also a semiprime.

Original entry on oeis.org

21, 33, 55, 77, 87, 91, 111, 115, 119, 129, 155, 161, 185, 215, 235, 247, 249, 259, 267, 287, 291, 295, 301, 303, 305, 323, 339, 341, 355, 361, 365, 381, 417, 427, 453, 469, 481, 485, 501, 505, 511, 517, 527, 533, 537, 551, 573, 589, 591
Offset: 1

Views

Author

Jonathan Vos Post, Dec 08 2010

Keywords

Comments

Semiprimes which are a leg of an integral right triangle whose hypotenuse is also semiprime. This is to A048161 as semiprimes A001358 are to primes A000040. All terms must be odd (else r is not an integer).

Examples

			a(1) = 21 because 21 = 3*7 is semiprime, and (21^2+1)/2 = 221 = 13 * 17 is semiprime.
a(2) = 33 because 33 = 3 * 11 is semiprime, and (33^2+1)/2 = 545 = 5 * 109 is semiprime.
a(3) = 55 because 55 = 5 * 11 is semiprime, and (55^2+1)/2 = 1513 = 17 * 89 is semiprime.
		

Crossrefs

Programs

  • PARI
    is_A176945(n)={ bittest(n,0) & bigomega(n)==2 & bigomega(1+n^2\2)==2 }  \\ M. F. Hasler, Dec 08 2010

Formula

{s such that s = p_1 * q_1 for p_1, q_1 primes, and r=(s^2+1)/2 = p_2 * q_2 for p_2, q_2 primes}.

A341272 Primes p such that (p^1024 + 1)/2 is prime.

Original entry on oeis.org

827, 10861, 19501, 22751, 23339, 23663, 26347, 29581, 50077, 62131, 63331, 70657, 72221, 73523, 78301, 85447, 109013, 122363, 127363, 149213, 155461, 170551, 173549, 183877, 188579, 206627, 218149, 220147, 222029, 226099, 227231, 232051, 247601, 248317, 248543
Offset: 1

Views

Author

Jon E. Schoenfield, Feb 07 2021

Keywords

Comments

Expressions of the form m^j + 1 can be factored (e.g., m^3 + 1 = (m + 1)*(m^2 - m + 1)) for any positive integer j except when j is a power of 2, so (p^j + 1)/2 for prime p cannot be prime unless j is a power of 2. A005383, A048161, A176116, A340480, A341210, A341224, A341229, A341230, A341234, A341264, and this sequence list primes of the form (p^j + 1)/2 for j=2^0=1, j=2^1=2, ..., j=2^10=1024, respectively.

Examples

			(3^1024 + 1)/2 = 1866959243...6855178241 (a 489-digit number) = 59393 * 448524289 * 847036417 * 8273923970...2296603649 (a 466-digit composite number), so 3 is not a term.
(827^1024 + 1)/2 = 1677304013...0116613121 (a 2988-digit number) is prime, so 827 is a term. Since 827 is the smallest prime p such that (p^1024 + 1)/2 is prime, it is a(1) and is also A341211(10).
		

Crossrefs

Primes p such that (p^(2^k) + 1)/2 is prime: A005383 (k=0), A048161 (k=1), A176116 (k=2), A340480 (k=3), A341210 (k=4), A341224 (k=5), A341229 (k=6), A341230 (k=7), A341234 (k=8), A341264 (k=9), (this sequence) (k=10).
Cf. A341211 (Smallest prime p such that (p^(2^n) + 1)/2 is prime).

Extensions

a(17)-a(35) from Jinyuan Wang, Feb 09 2021
Previous Showing 41-48 of 48 results.