cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 99 results. Next

A305101 G.f.: Sum_{k>=1} x^k/(1+x^k) * Product_{k>=1} (1+x^k)/(1-x^k).

Original entry on oeis.org

0, 1, 2, 6, 11, 22, 40, 70, 116, 191, 304, 474, 726, 1094, 1624, 2384, 3453, 4950, 7030, 9890, 13798, 19108, 26264, 35858, 48652, 65615, 87996, 117396, 155826, 205854, 270728, 354506, 462306, 600544, 777184, 1002180, 1287889, 1649578, 2106152, 2680924
Offset: 0

Views

Author

Vaclav Kotesovec, May 25 2018

Keywords

Comments

Convolution of A209423 and A000009.
Convolution of A015723 and A000041.
Convolution of A048272 and A015128.
a(n) is the number of overlined parts in all overpartitions of n. - Joerg Arndt, Jun 18 2020

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Sum[x^k/(1+x^k), {k, 1, nmax}] * Product[(1+x^k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]
  • PARI
    my(N=44, q='q+O('q^N)); Vec( prod(k=1,N, (1+q^k)/(1-q^k)) * sum(k=1,N, 1*q^k/(1+q^k)) ) \\ Joerg Arndt, Jun 18 2020

Formula

a(n) ~ exp(sqrt(n)*Pi) * log(2) / (4*Pi*sqrt(n)).
a(n) = A305122(n) + A305124(n).

A305152 Expansion of Sum_{k>0} x^(k^2) / (1 + x^k).

Original entry on oeis.org

1, -1, 1, 0, 1, -2, 1, 0, 2, -2, 1, -1, 1, -2, 2, 1, 1, -3, 1, -1, 2, -2, 1, 0, 2, -2, 2, -1, 1, -4, 1, 1, 2, -2, 2, -1, 1, -2, 2, 0, 1, -4, 1, -1, 3, -2, 1, 1, 2, -3, 2, -1, 1, -4, 2, 0, 2, -2, 1, -2, 1, -2, 3, 2, 2, -4, 1, -1, 2, -4, 1, 0, 1, -2, 3, -1, 2, -4, 1
Offset: 1

Views

Author

Seiichi Manyama, May 26 2018

Keywords

Crossrefs

Cf. A038548, A048272, A193773 (odd bisection), A348608, A228441, A010052, A348952.

Programs

  • PARI
    {a(n) = polcoeff(sum(k=1, sqrtint(n), x^(k^2)/(1+x^k))+x*O(x^n), n)}
    
  • PARI
    a(n) = sumdiv(n, d, if (d <= sqrtint(n), (-1)^(d + n/d))); \\ Michel Marcus, Nov 03 2021

Formula

a(n) = Sum_{d|n, d <= sqrt(n)} (-1)^(d + n/d). - Ilya Gutkovskiy, Nov 02 2021
a(n) = (A228441(n) + A010052(n))/2. - Ridouane Oudra, Aug 14 2025
a(n) = A010052(n) - A348952(n). - Ridouane Oudra, Aug 20 2025

A307397 G.f. A(x) satisfies: A(x) = 1 + Sum_{k>=1} x^k*A(x)^k/(1 + x^k*A(x)^k).

Original entry on oeis.org

1, 1, 1, 3, 8, 18, 50, 150, 429, 1258, 3835, 11740, 36148, 112856, 355318, 1124582, 3582186, 11477162, 36939043, 119387415, 387393424, 1261422550, 4120343870, 13498085604, 44337516318, 145993301239, 481812344551, 1593439356575, 5280074015618, 17528034861180
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 07 2019

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 8*x^4 + 18 x^5 + 50*x^6 + 150*x^7 + 429*x^8 + 1258*x^9 + 3835*x^10 + ...
		

Crossrefs

Programs

  • Mathematica
    terms = 30; A[] = 0; Do[A[x] = 1 + Sum[x^k A[x]^k/ (1 + x^k A[x]^k), {k, 1, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]
    terms = 30; A[] = 0; Do[A[x] = 1 + Sum[Sum[(-1)^(d + 1), {d, Divisors[k]}] x^k A[x]^k, {k, 1, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]
    terms = 30; CoefficientList[1/x InverseSeries[Series[x/(1 + Sum[Sum[(-1)^(d + 1), {d, Divisors[k]}] x^k, {k, 1, terms}]), {x, 0, terms}], x], x]
    (* Calculation of constant d: *) val = r /. FindRoot[{Log[1 - r*s] + QPolyGamma[0, 1 - I*Pi/Log[r*s], r*s] == (1 - s)*Log[r*s], (1 - s)/s - I*Pi*QPolyGamma[1, 1 - I*Pi/Log[r*s], r*s] / (s*Log[r*s]^2) + r*(1/(1 - r*s) - Derivative[0, 0, 1][QPolyGamma][0, 1 - I*Pi/Log[r*s], r*s]) == Log[r*s]}, {r, 1/3}, {s, 2}, WorkingPrecision -> 100]; N[1/Chop[val], -Floor[Log[10, Abs[Im[val]]]] - 3] (* Vaclav Kotesovec, Sep 27 2023 *)

Formula

G.f. A(x) satisfies: A(x) = 1 + Sum_{k>=1} A048272(k)*x^k*A(x)^k.
G.f.: A(x) = (1/x)*Series_Reversion(x/(1 + Sum_{k>=1} A048272(k)*x^k)).
a(n) ~ c * d^n / n^(3/2), where d = 3.494393309755265712092948136162079492013891957890570364999827377394989... and c = 0.4966863488644340281558816065879601408815044380350316600850227488... - Vaclav Kotesovec, Sep 27 2023

A317529 Expansion of Sum_{k>=1} x^(k^2)/(1 + x^(k^2)).

Original entry on oeis.org

1, -1, 1, 0, 1, -1, 1, -2, 2, -1, 1, 0, 1, -1, 1, -1, 1, -2, 1, 0, 1, -1, 1, -2, 2, -1, 2, 0, 1, -1, 1, -3, 1, -1, 1, 0, 1, -1, 1, -2, 1, -1, 1, 0, 2, -1, 1, -1, 2, -2, 1, 0, 1, -2, 1, -2, 1, -1, 1, 0, 1, -1, 2, -2, 1, -1, 1, 0, 1, -1, 1, -4, 1, -1, 2, 0, 1, -1, 1, -1, 3, -1, 1, 0, 1, -1, 1, -2, 1, -2, 1, 0, 1, -1, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 30 2018

Keywords

Crossrefs

Programs

  • Maple
    seq(coeff(series(add(x^(k^2)/(1+x^(k^2)),k=1..n), x,n+1),x,n),n=1..100); # Muniru A Asiru, Jul 30 2018
  • Mathematica
    nmax = 95; Rest[CoefficientList[Series[Sum[x^k^2/(1 + x^k^2), {k, 1, nmax}], {x, 0, nmax}], x]]
    nmax = 95; Rest[CoefficientList[Series[Log[Product[(1 + x^k^2)^(1/k^2), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]]
    Table[DivisorSum[n, (-1)^(n/# + 1) &, IntegerQ[#^(1/2)] &], {n, 95}]
    f[p_, e_] := If[p == 2, If[OddQ[e], -Floor[e/2 + 1], -Floor[(e - 1)/2]], Floor[e/2 + 1]]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 25 2020 *)
  • PARI
    A317529(n) = sumdiv(n,d,((-1)^(1+(n/d)))*issquare(d)); \\ Antti Karttunen, Nov 07 2018

Formula

G.f.: Sum_{k>=1} x^A000290(k)/(1 + x^A000290(k)).
L.g.f.: log(Product_{k>=1} (1 + x^(k^2))^(1/k^2)) = Sum_{n>=1} a(n)*x^n/n.
a(n) = Sum_{d|n} (-1)^(n/d+1)*A010052(d).
If n is odd, a(n) = A046951(n).
Multiplicative with a(2^e) = -floor(e/2+1) for odd e, -floor((e-1)/2) for even e, and a(p^e) = floor(e/2+1) for an odd prime p. - Amiram Eldar, Oct 25 2020
From Amiram Eldar, Dec 18 2023: (Start)
Dirichlet g.f.: zeta(s) * zeta(2*s) * (1 - 1/2^(s-1)).
Sum_{k=1..n} a(k) ~ c * sqrt(n), where c = -(sqrt(2)-1) * zeta(1/2) = 0.604898... (A113024). (End)

A325937 Expansion of Sum_{k>=1} (-1)^(k + 1) * x^(2*k) / (1 - x^k).

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 1, -1, 2, 1, 1, -1, 1, 1, 3, -2, 1, 1, 1, -1, 3, 1, 1, -3, 2, 1, 3, -1, 1, 1, 1, -3, 3, 1, 3, -2, 1, 1, 3, -3, 1, 1, 1, -1, 5, 1, 1, -5, 2, 1, 3, -1, 1, 1, 3, -3, 3, 1, 1, -3, 1, 1, 5, -4, 3, 1, 1, -1, 3, 1, 1, -5, 1, 1, 5, -1, 3, 1, 1, -5
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 09 2019

Keywords

Comments

Number of odd proper divisors of n minus number of even proper divisors of n.

Crossrefs

Cf. A032741, A048272, A058344, A091954, A275495 (partial sums), A325939.

Programs

  • Mathematica
    nmax = 80; CoefficientList[Series[Sum[(-1)^(k + 1) x^(2 k)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[-DivisorSum[n, (-1)^# &, # < n &], {n, 1, 80}]
  • PARI
    A325937(n) = -sumdiv(n, d, if(d==n,0,((-1)^d))); \\ Antti Karttunen, Sep 20 2019

Formula

G.f.: Sum_{k>=2} x^k / (1 + x^k).
a(n) = -Sum_{d|n, d
a(n) = A048272(n) + (-1)^n.

A332682 a(n) = Sum_{k=1..n} (-1)^(k+1) * ceiling(n/k).

Original entry on oeis.org

1, 1, 2, 3, 3, 4, 5, 6, 5, 7, 8, 9, 8, 9, 10, 13, 11, 12, 13, 14, 13, 16, 17, 18, 15, 17, 18, 21, 20, 21, 22, 23, 20, 23, 24, 27, 25, 26, 27, 30, 27, 28, 29, 30, 29, 34, 35, 36, 31, 33, 34, 37, 36, 37, 38, 41, 38, 41, 42, 43, 40, 41, 42, 47, 43, 46, 47, 48, 47, 50
Offset: 1

Author

Ilya Gutkovskiy, Feb 19 2020

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local k; add((-1)^(k+1)*ceil(n/k),k=1..n) end proc:
    map(f, [$1..100]); # Robert Israel, Nov 25 2024
  • Mathematica
    Table[Sum[(-1)^(k + 1) Ceiling[n/k], {k, 1, n}], {n, 1, 70}]
    nmax = 70; CoefficientList[Series[(x/(1 - x)) (1 + Sum[x^k/(1 + x^k), {k, 2, nmax}]), {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sum(k=1, n, (-1)^(k+1)*ceil(n/k)); \\ Michel Marcus, Feb 21 2020

Formula

G.f.: (x/(1 - x)) * (1 + Sum_{k>=2} x^k / (1 + x^k)).
G.f.: (x/(1 - x)) * (1 + Sum_{k>=1} (-1)^(k+1) * x^(2*k) / (1 - x^k)).
a(n) = (n mod 2) + Sum_{k=1..n-1} A048272(k).
a(n) = 1 + Sum_{k<=n-1} A325937(k). - Robert Israel, Nov 25 2024

A333781 G.f.: Sum_{k>=1} (-1)^(k + 1) * x^(k^2) / (1 - x^k).

Original entry on oeis.org

1, 1, 1, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 2, -1, 1, 1, 1, -1, 2, 0, 1, 0, 2, 0, 2, -1, 1, 2, 1, -1, 2, 0, 2, -1, 1, 0, 2, 0, 1, 0, 1, -1, 3, 0, 1, -1, 2, 1, 2, -1, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 3, -2, 2, 0, 1, -1, 2, 2, 1, -2, 1, 0, 3, -1, 2, 0, 1, -1, 3, 0, 1, 0, 2, 0, 2, -2, 1, 2
Offset: 1

Author

Ilya Gutkovskiy, Apr 05 2020

Keywords

Comments

Number of odd divisors of n that are <= sqrt(n) minus number of even divisors of n that are <= sqrt(n).

Programs

  • Mathematica
    nmax = 90; CoefficientList[Series[Sum[(-1)^(k + 1) x^(k^2)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, if (d^2<=n, if (d%2, 1, -1))); \\ Michel Marcus, Apr 05 2020

Formula

From Ridouane Oudra, Sep 04 2025: (Start)
a(n) = Sum_{d|n, d <= sqrt(n)} (-1)^(d+1).
a(n) = A333809(n) + A258998(n).
a(n) = A348951(n) + A048272(n). (End)

A338814 Expansion of e.g.f. log(Product_{k>0} (1 + x^k)^(1/k)).

Original entry on oeis.org

1, 0, 4, -6, 48, 0, 1440, -10080, 120960, 0, 7257600, -79833600, 958003200, 0, 348713164800, -3923023104000, 41845579776000, 0, 12804747411456000, -243290200817664000, 9731608032706560000, 0, 2248001455555215360000, -103408066955539906560000
Offset: 1

Author

Seiichi Manyama, Nov 10 2020

Keywords

Crossrefs

Column 1 of A338813.

Programs

  • Mathematica
    a[n_] := (n - 1)! * DivisorSum[n, (-1)^(# + 1) &]; Array[a, 25] (* Amiram Eldar, Apr 28 2021 *)
  • PARI
    N=40; x='x+O('x^N); Vec(serlaplace(log(prod(k=1, N, (1+x^k)^(1/k)))))
    
  • PARI
    {a(n) = if(n<1, 0, (n-1)!*sumdiv(n, d, (-1)^(d+1)))}

Formula

a(n) = (n-1)! * A048272(n).

A344299 Expansion of Sum_{k>=1} (-1)^(k+1) * x^(k^2) / (1 - x^(k^2)).

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 1, -1, 1, 2, 1, 0, 1, 1, 1, 0, 2, 1, 2, 0, 1, 1, 1, -1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, -1, 2, 2, 1, 0, 1, 2, 1, 0, 1, 1, 1, 0, 1, 1, 2, -2, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 1, -1, 3, 1, 1, 0, 1, 1, 1, 0, 1, 2
Offset: 1

Author

Ilya Gutkovskiy, May 14 2021

Keywords

Comments

Number of odd squares dividing n minus number of even squares dividing n.
Inverse Moebius transform of A258998.

Programs

  • Mathematica
    nmax = 90; CoefficientList[Series[Sum[(-1)^(k + 1) x^(k^2)/(1 - x^(k^2)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, (-1)^(# + 1) &, IntegerQ[#^(1/2)] &], {n, 1, 90}]
    f[p_, e_] := 1 - (-1)^p*Floor[e/2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 15 2022 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 - (-1)^f[i,1] * floor(f[i,2]/2));} \\ Amiram Eldar, Nov 15 2022

Formula

G.f.: Sum_{k>=1} (1 - theta_4(x^k)) / 2.
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(2^e) = 1 - floor(e/2), and a(p^e) = 1 + floor(e/2) for p > 2.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi^2/12 (A072691). (End)

A357761 a(n) = A227872(n) - A356018(n).

Original entry on oeis.org

1, 2, 0, 3, 0, 0, 2, 4, -1, 0, 2, 0, 2, 4, -2, 5, 0, -2, 2, 0, 2, 4, 0, 0, 1, 4, -2, 6, 0, -4, 2, 6, 0, 0, 2, -3, 2, 4, 0, 0, 2, 4, 0, 6, -4, 0, 2, 0, 3, 2, -2, 6, 0, -4, 2, 8, 0, 0, 2, -6, 2, 4, 0, 7, 0, 0, 2, 0, 0, 4, 0, -4, 2, 4, -2, 6, 2, 0, 2, 0, -1, 4, 0
Offset: 1

Author

Amiram Eldar, Oct 12 2022

Keywords

Comments

The excess of the number of odious (A000069) divisors of n over the number of evil (A001969) divisors of n.
Every integer occurs in this sequence.

Crossrefs

Cf. A000005, A000069, A000290 (positions of odd terms), A001969, A027697, A027699, A106400, A227872, A230851 (positions of 0's), A356018, A357762.
Similar sequences: A046660, A048272.

Programs

  • Mathematica
    a[n_] := -DivisorSum[n, (-1)^DigitCount[#, 2, 1] &]; Array[a, 100]
  • PARI
    a(n) = -sumdiv(n, d, (-1)^hammingweight(d));

Formula

a(n) = -Sum_{d|n} A106400(d).
a(n) = A000005(n) - 2*A356018(n).
a(n) = 2*A227872(n) - A000005(n).
a(n) = 0 iff n is in A230851.
a(n) == 1 (mod 2) iff n is a square (A000290).
a(2^n) = n + 1.
a(p*2^n) = 0 when p is an evil prime (A027699).
a(p^2*2^n) = n + 1 when p is an evil prime (A027699) and p^2 is odious, and when p is an odd odious prime (A027697) and p^2 is evil.
a(p^2*2^n) = -(n+1) when p is an evil prime and p^2 is also evil.
a(p^2*2^n) = 3*(n+1) when p is an odd odious prime and p^2 is also odious.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = -Sum_{k>=1} A106400(k)/k = 1.196283264... (A357762).
Previous Showing 51-60 of 99 results. Next