cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A048443 Take the first n numbers written in base 12, concatenate them, then convert from base 12 to base 10.

Original entry on oeis.org

1, 14, 171, 2056, 24677, 296130, 3553567, 42642812, 511713753, 6140565046, 73686780563, 10610896401084, 1527969081756109, 220027547772879710, 31683966879294678255, 4562491230618433668736, 656998737209054448298001, 94607818158103840554912162
Offset: 1

Views

Author

Patrick De Geest, May 15 1999

Keywords

Examples

			a(12) = (1)(2)(3)(4)(5)(6)(7)(8)(9)(A)(B)(10) = 123456789AB10_12 = 10610896401084.
		

Crossrefs

Cf. A014882.
Concatenation of first n numbers in other bases: 2: A047778, 3: A048435, 4: A048436, 5: A048437, 6: A048438, 7: A048439, 8: A048440, 9: A048441, 10: A007908, 11: A048442, 12: this sequence, 13: A048444, 14: A048445, 15: A048446, 16: A048447.

Programs

  • Magma
    [n eq 1 select 1 else Self(n-1)*12^(1+Ilog(12, n))+n: n in [1..20]]; // Vincenzo Librandi, Dec 30 2012
  • Mathematica
    If[STARTPOINT==1, n={}, n=Flatten[IntegerDigits[Range[STARTPOINT-1], 12]]]; Table[AppendTo[n, IntegerDigits[w, 12]]; n=Flatten[n]; FromDigits[n, 12], {w, STARTPOINT, ENDPOINT}] (* Dylan Hamilton, Aug 11 2010 *)
    f[n_]:= FromDigits[Flatten@IntegerDigits[Range@n, 12], 12]; Array[f, 20] (* Vincenzo Librandi, Dec 30 2012 *)

A048444 Take the first n numbers written in base 13, concatenate them, then convert from base 13 to base 10.

Original entry on oeis.org

1, 15, 198, 2578, 33519, 435753, 5664796, 73642356, 957350637, 12445558291, 161792257794, 2103299351334, 355457590375459, 60072332773452585, 10152224238713486880, 1715725896342579282736, 289957676481895898782401, 49002847325440406894225787
Offset: 1

Views

Author

Patrick De Geest, May 15 1999

Keywords

Comments

No primes in the first 31000 terms. - Giovanni Resta, Jun 08 2018

Examples

			a(12) = (1)(2)(3)(4)(5)(6)(7)(8)(9)(A)(B)(C) = 123456789ABC_13 = 2103299351334.
		

Crossrefs

Cf. A014896.
Concatenation of first n numbers in other bases: 2: A047778, 3: A048435, 4: A048436, 5: A048437, 6: A048438, 7: A048439, 8: A048440, 9: A048441, 10: A007908, 11: A048442, 12: A048443, 13: this sequence, 14: A048445, 15: A048446, 16: A048447.

Programs

  • Magma
    [n eq 1 select 1 else Self(n-1)*13^(1+Ilog(13, n))+n: n in [1..20]]; // Vincenzo Librandi, Dec 30 2012
  • Mathematica
    If[STARTPOINT==1, n={}, n=Flatten[IntegerDigits[Range[STARTPOINT-1], 13]]]; Table[AppendTo[n, IntegerDigits[w, 13]]; n=Flatten[n]; FromDigits[n, 13], {w, STARTPOINT, ENDPOINT}] (* Dylan Hamilton, Aug 11 2010 *)
    f[n_]:= FromDigits[Flatten@IntegerDigits[Range@n, 13], 13]; Array[f, 20] (* Vincenzo Librandi, Dec 30 2012 *)

A048445 Take the first n numbers written in base 14, concatenate them, then convert from base 14 to base 10.

Original entry on oeis.org

1, 16, 227, 3182, 44553, 623748, 8732479, 122254714, 1711566005, 23961924080, 335466937131, 4696537119846, 65751519677857, 12887297856859986, 2525910379944557271, 495078434469133225132, 97035373155950112125889, 19018933138566221976674262, 3727710895158979507428155371
Offset: 1

Views

Author

Patrick De Geest, May 15 1999

Keywords

Examples

			a(14) = (1)(2)(3)(4)(5)(6)(7)(8)(9)(A)(B)(C)(D)(10) = 123456789ABCD10_14 = 12887297856859986.
		

Crossrefs

Cf. A014897.
Concatenation of first n numbers in other bases: 2: A047778, 3: A048435, 4: A048436, 5: A048437, 6: A048438, 7: A048439, 8: A048440, 9: A048441, 10: A007908, 11: A048442, 12: A048443, 13: A048444, 14: this sequence, 15: A048446, 16: A048447.

Programs

  • Magma
    [n eq 1 select 1 else Self(n-1)*14^(1+Ilog(14, n))+n: n in [1..20]]; // Vincenzo Librandi, Dec 30 2012
  • Mathematica
    If[STARTPOINT==1, n={}, n=Flatten[IntegerDigits[Range[STARTPOINT-1], 14]]]; Table[AppendTo[n, IntegerDigits[w, 14]]; n=Flatten[n]; FromDigits[n, 14], {w, STARTPOINT, ENDPOINT}] (* Dylan Hamilton, Aug 11 2010 *)
    f[n_]:= FromDigits[Flatten@IntegerDigits[Range@n, 14], 14]; Array[f, 20] (* Vincenzo Librandi, Dec 30 2012 *)

A048446 Take the first n numbers written in base 15, concatenate them, then convert from base 15 to base 10.

Original entry on oeis.org

1, 17, 258, 3874, 58115, 871731, 13075972, 196139588, 2942093829, 44131407445, 661971111686, 9929566675302, 148943500129543, 2234152501943159, 502684312937210790, 113103970410872427766, 25448393342446296247367, 5725888502050416655657593, 1288324912961343747522958444
Offset: 1

Views

Author

Patrick De Geest, May 15 1999

Keywords

Examples

			a(14) = (1)(2)(3)(4)(5)(6)(7)(8)(9)(A)(B)(C)(D)(E) = 123456789ABCDE_15 = 2234152501943159.
		

Crossrefs

Cf. A014898.
Concatenation of first n numbers in other bases: 2: A047778, 3: A048435, 4: A048436, 5: A048437, 6: A048438, 7: A048439, 8: A048440, 9: A048441, 10: A007908, 11: A048442, 12: A048443, 13: A048444, 14: A048445, 15: this sequence, 16: A048447.

Programs

  • Magma
    [n eq 1 select 1 else Self(n-1) * 15^(1+Ilog(15, n)) + n: n in [1..20]]; // Vincenzo Librandi, Dec 30 2012
  • Mathematica
    If[STARTPOINT==1, n={}, n=Flatten[IntegerDigits[Range[STARTPOINT-1], 15]]]; Table[AppendTo[n, IntegerDigits[w, 15]]; n=Flatten[n]; FromDigits[n, 15], {w, STARTPOINT, ENDPOINT}] (* Dylan Hamilton, Aug 11 2010 *)
    f[n_]:= FromDigits[Flatten@IntegerDigits[Range@n, 15], 15]; Array[f, 20] (* Vincenzo Librandi, Dec 30 2012 *)

A117640 Concatenation of first n numbers in base 4.

Original entry on oeis.org

1, 12, 123, 12310, 1231011, 123101112, 12310111213, 1231011121320, 123101112132021, 12310111213202122, 1231011121320212223, 123101112132021222330, 12310111213202122233031
Offset: 1

Views

Author

Jonathan Vos Post, Apr 27 2006

Keywords

Comments

Concatenation of the first n terms of A007090.
Base-4 analog of A058935.

Crossrefs

Other bases: A058935 (2), A360502 (3), A007908 (10).

Programs

  • Mathematica
    Table[FromDigits[Flatten[Table[IntegerDigits[n,4],{n,k}]]],{k,15}] (* Harvey P. Dale, Jan 18 2023 *)
  • Python
    from gmpy2 import digits
    def A117640(n): return int(''.join(digits(n,4) for n in range(1,n+1))) # Chai Wah Wu, Apr 19 2023

Extensions

Edited by Jason Kimberley, Nov 27 2012

A350510 Square array read by descending antidiagonals: A(n,k) is the least number m such that the base-n expansion of m contains the base-n expansions of 1..k as substrings.

Original entry on oeis.org

1, 2, 1, 6, 5, 1, 12, 11, 6, 1, 44, 38, 27, 7, 1, 44, 95, 75, 38, 8, 1, 92, 285, 331, 194, 51, 9, 1, 184, 933, 1115, 694, 310, 66, 10, 1, 1208, 2805, 4455, 3819, 1865, 466, 83, 11, 1, 1256, 7179, 17799, 16444, 8345, 3267, 668, 102, 12, 1
Offset: 2

Views

Author

Davis Smith, Jan 02 2022

Keywords

Examples

			Square array begins:
n/k|| 1 |  2 |   3 |    4 |     5 |      6 |       7 |        8 |
================================================================|
2  || 1 |  2 |   6 |   12 |    44 |     44 |      92 |      184 |
3  || 1 |  5 |  11 |   38 |    95 |    285 |     933 |     2805 |
4  || 1 |  6 |  27 |   75 |   331 |   1115 |    4455 |    17799 |
5  || 1 |  7 |  38 |  194 |   694 |   3819 |   16444 |    82169 |
6  || 1 |  8 |  51 |  310 |  1865 |   8345 |   55001 |   289577 |
7  || 1 |  9 |  66 |  466 |  3267 |  22875 |  123717 |   947260 |
8  || 1 | 10 |  83 |  668 |  5349 |  42798 |  342391 |  2177399 |
9  || 1 | 11 | 102 |  922 |  8303 |  74733 |  672604 |  6053444 |
10 || 1 | 12 | 123 | 1234 | 12345 | 123456 | 1234567 | 12345678 |
11 || 1 | 13 | 146 | 1610 | 17715 | 194871 | 2143588 | 23579476 |
		

Crossrefs

The first n - 1 terms of rows: 2: A047778, 3: A048435, 4: A048436, 5: A048437, 6: A048438, 7: A048439, 8: A048440, 9: A048441, 10: A007908, 11: A048442, 12: A048443, 13: A048444, 14: A048445, 15: A048446, 16: A048447.

Programs

  • Mathematica
    T[n_,k_]:=(m=0;While[!ContainsAll[Subsequences@IntegerDigits[++m,n],IntegerDigits[Range@k,n]]];m);Flatten@Table[T[1+i,j+1-i],{j,9},{i,j}] (* Giorgos Kalogeropoulos, Jan 09 2022 *)
  • PARI
    A350510_rows(n,k,N=0)= my(L=List(concat(apply(z->fromdigits([1..z],n),[1..n-1]),if(n>2,fromdigits(concat([1,0],[2..n-1]),n),[]))),T1(x)=digits(x,n),T2(x)=fromdigits(x,n),A(x)=my(S=T1(x));setbinop((y,z)->T2(S[y..z]),[1..#S]),N=if(N,N,L[#L]),A1=A(N));while(#Lsetsearch(A1,z),[1..#L+1])),A1=A(N++));listput(L,N));Vec(L)

Formula

For k < n, A(n,k) = A(n,k - 1)*n + k = Sum_{i=1..k} i*(n^(k - i)).
A(n,n) = A049363(n).
A(n,2) = A057544(n).
For n > 3, A(n,3) = A102305(n).
A(n,n - 1) = A023811(n).

A179069 Array read by antidiagonals: row b lists the base-b analog of the base-10 sequence 1, 12, 123, ..., 123456789, 12345678910, ... (A007908).

Original entry on oeis.org

1, 1, 3, 1, 6, 6, 1, 5, 27, 10, 1, 6, 48, 220, 15, 1, 7, 27, 436, 1765, 21, 1, 8, 38, 436, 3939, 14126, 28, 1, 9, 51, 194, 6981, 35367, 113015, 36, 1, 10, 66, 310, 4855, 111702, 318310, 1808248
Offset: 1

Views

Author

Jonathan Vos Post, Jun 27 2010

Keywords

Comments

The numbers in the row b of the array are constructed in base b, but are converted to base 10 for display here.
R. K. Guy writes [UPINT, A3, pp. 9-10]: Selfridge asked if the sequence (in decimal notation) 1, 12, 123, 1234, ... [A007908] ... contains infinitely many primes.... The question can be asked for other scales of notation. There are (trivially) an infinite number of primes in the n=2 column, as that converges to k+2. In the n=3 column, the first prime is A[3,8] = 83 (base 10) = 123 (base 8). In the n=7 column, the first prime is A[8,7] = 342391 (base 10) = 1234567 (base 8). This can be continued to bases higher than 10, where A, B, C, ... are conventionally used as numerals. For example, A[12,5] = 12345 (base 12) = 24677 (base 10) is prime, as is A[12,17] = 656998737209054448298001 (base 10). A[13,3] = 227 (base 10) = 123 (base 13) is prime. Similarly, to pick the 9th row but go further than the table shown here, A[9,14] = 1709671414851143033 (base 10) is prime. Existing OEIS sequences stop at A048447, the concatenation of first n numbers in base 16.

Examples

			The array begins:
====================================================================
....|n=1.|.n=2.|.n=3.|.n=4.|..n=5.|..n=6.|...n=7.|.....n=8.|.in OEIS
b=1.|.1..|...3.|...6.|..10.|...15.|...21.|....28.|......36.|.A000217
b=2.|.1..|...6.|..27.|.220.|.1765.|.14126|.113015|.1808248.|.A047778
b=3.|.1..|...5.|..48.|.436.|.3929.|.35367|.318310|.2864798.|.A048435
b=4.|.1..|...6.|..27.|.436.|.6981.|111702|1787239|28595832.|.A048436
b=5.|.1..|...7.|..38.|.194.|.4855.|121381|3034532|75863308.|.A048437
b=6.|.1..|...8.|..51.|.310.|.1865.|.67146|2417263|87021476.|.A048438
b=7.|.1..|...9.|..66.|.466.|.3267.|.22875|1120882|54923226.|.A048439
b=8.|.1..|..10.|..83.|.668.|.5349.|.42798|.342391|21913032.|.A048440
...
b=10|.1..|..12.|.123.|1234.|12345.|123456|1234567|12345678.|.A007908
=====================================================================
		

References

  • Richard K. Guy, Unsolved Problems In Number Theory, 2nd Edn., Springer Verlag, 1994.

Crossrefs

Formula

A[b,n] = n-th integer concatenated from consecutive integers in base b.

Extensions

Should be revised to start with base 2, rather than the ill-defined "base 1". - N. J. A. Sloane, Jul 05 2010

A179075 Concatenation of the first n numbers in base n.

Original entry on oeis.org

6, 48, 436, 4855, 67146, 1120882, 21913032, 490328973, 12345678910, 345227121316, 10610896401084, 355457590375459, 12887297856859986, 502684312937210790, 20988295479420645136, 933876701895122362393, 44111544001370512713990, 2204350295349917301461848
Offset: 2

Views

Author

Jonathan Vos Post, Jun 27 2010

Keywords

Comments

Always divisible by n, hence never prime.

Examples

			a(2) = 110 (base 2) = 6 (base 10) = A047778(2).
a(3) = 1210 (base 3) = 48 (base 10) = A048435(3).
a(4) = 12310 (base 4) = 436 (base 10) = A048436(4).
a(5) = 123410 (base 5) = 4855 (base 10) = A048437(5).
a(11) = 123456789A10 (base 11) = 345227121316 (base 10).
a(16) = 123456789ABCDE10 (base 16) = 20988295479420645136 (base 10) = A048447(16).
		

Crossrefs

Programs

  • PARI
    {for(n=2,19,tlt=0;
    for(i=1,n-1,tlt=tlt+i*(n^(n+1-i)));
    print1(tlt+n, ", ") )} \\ Douglas Latimer, May 10 2012

Formula

a(n) = n + sum(i*(n^(n+1-i)), i=1..n-1).

Extensions

Edited (errors corrected, sequence extended) by Jon E. Schoenfield, Jul 05 2010 and Jul 06 2010
More terms from Douglas Latimer, May 10 2012

A386985 Smallest k > 0 such that the base-n number formed by concatenating k, k - 1, ..., 2, 1 (each written in base n) is prime, or -1 if no such k exists for the given n.

Original entry on oeis.org

2, 2, 4, 2, 2, 373, 2, 2, 82, 2, 3
Offset: 2

Views

Author

Marco RipĂ , Aug 11 2025

Keywords

Comments

If a(13) != -1, then the corresponding prime must have more than 4178 decimal digits.
Sequence continues n=13..36: ?, 2, 2, 28, 362, 2, ?, 2, 2, 4, 2, 3, ?, 2, 5, 4, 2, 2, 37, 3, 2, 4, 2, 2.
The increasing-order analog begins 15, 2, ?. See A048436.

Examples

			a(3) = 2 since 21_(base-3) = 7_(base-10), which is prime.
		

Crossrefs

Programs

  • PARI
    f(n, b) = my(p=1, L=1); sum(k=1, n, k*p*=L+(k==L&&!L*=b)); \\ adapted from A000422
    a(n) = my(k=1); while (!ispseudoprime(f(k, n)), k++); k; \\ Michel Marcus, Aug 16 2025
Previous Showing 11-19 of 19 results.