cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A208224 a(n)=(a(n-1)^2*a(n-3)^3+a(n-2))/a(n-4) with a(0)=a(1)=a(2)=a(3)=1.

Original entry on oeis.org

1, 1, 1, 1, 2, 5, 27, 5837, 2129410576, 17850077316687753782569, 2346851008195218976646246398770505953580095510848345967
Offset: 0

Views

Author

Matthew C. Russell, Apr 25 2012

Keywords

Comments

This is the case a=3, b=1, c=2, y(0)=y(1)=y(2)=y(3)=1 of the recurrence shown in the Example 3.3 of "The Laurent phenomenon" (see Link lines, p. 10).
The next term (a(11)) has 133 digits. - Harvey P. Dale, Mar 06 2017

Crossrefs

Programs

  • Maple
    y:=proc(n) if n<4 then return 1: fi: return (y(n-1)^2*y(n-3)^3+y(n-2))/y(n-4): end:
    seq(y(n),n=0..11);
  • Mathematica
    RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==1,a[n]==(a[n-1]^2*a[n-3]^3+ a[n-2])/ a[n-4]},a,{n,10}] (* Harvey P. Dale, Mar 06 2017 *)

A208225 a(n)=(a(n-1)^3*a(n-3)^3+a(n-2))/a(n-4) with a(0)=a(1)=a(2)=a(3)=1.

Original entry on oeis.org

1, 1, 1, 1, 2, 9, 731, 3124943137, 11123050014071530610530827873034
Offset: 0

Views

Author

Matthew C. Russell, Apr 25 2012

Keywords

Comments

This is the case a=3, b=1, c=3, y(0)=y(1)=y(2)=y(3)=1 of the recurrence shown in the Example 3.3 of "The Laurent phenomenon" (see Link lines, p. 10).

Crossrefs

Programs

  • Maple
    y:=proc(n) if n<4 then return 1: fi: return (y(n-1)^3*y(n-3)^3+y(n-2))/y(n-4): end:
    seq(y(n),n=0..9);
  • Mathematica
    RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==1,a[n]==(a[n-1]^3 a[n-3]^3+ a[n-2])/ a[n-4]},a,{n,10}] (* Harvey P. Dale, Aug 25 2016 *)

A208227 a(n) = (a(n-1)^2*a(n-3)^4+a(n-2))/a(n-4) with a(0)=a(1)=a(2)=a(3)=1.

Original entry on oeis.org

1, 1, 1, 1, 2, 5, 27, 11669, 42551737826, 192450770996317798484507077, 25433732883480327279167427243395261255488704554514737402263583619505
Offset: 0

Views

Author

Matthew C. Russell, Apr 25 2012

Keywords

Comments

This is the case a=4, b=1, c=2, y(0)=y(1)=y(2)=y(3)=1 of the recurrence shown in the Example 3.3 of "The Laurent phenomenon" (see Link lines, p. 10).

Crossrefs

Programs

  • Maple
    y:=proc(n) if n<4 then return 1: fi: return (y(n-1)^2*y(n-3)^4+y(n-2))/y(n-4): end:
    seq(y(n),n=0..10);
  • Mathematica
    a[n_]:=If[n<4,1, (a[n - 1]^2*a[n- 3]^4 + a[n - 2])/a[n - 4]]; Table[a[n], {n, 0, 10}] (* Indranil Ghosh, Mar 19 2017 *)

A208218 a(n)=(a(n-1)^2*a(n-3)+a(n-2))/a(n-4) with a(0)=a(1)=a(2)=a(3)=1.

Original entry on oeis.org

1, 1, 1, 1, 2, 5, 27, 1463, 5350936, 154615586811211, 1295349936263652139582251464117, 6137049788665571444030885529267632764941063995324839557922175605
Offset: 0

Views

Author

Matthew C. Russell, Apr 24 2012

Keywords

Comments

This is the case a=1, b=1, c=2, y(0)=y(1)=y(2)=y(3)=1 of the recurrence shown in the Example 3.3 of "The Laurent phenomenon" (see Link lines, p. 10).

Crossrefs

Cf. A048736.

Programs

  • Magma
    [n le 4 select 1 else (Self(n-1)^2*Self(n-3)+Self(n-2))/Self(n-4): n in [1..12]]; // Bruno Berselli, Apr 24 2012
  • Maple
    y:=proc(n) if n<4 then return 1: fi: return (y(n-1)^2*y(n-3)+y(n-2))/y(n-4): end:
    seq(y(n),n=0..11);
  • Mathematica
    RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==1,a[n]==(a[n-1]^2*a[n-3]+ a[n-2])/ a[n-4]},a,{n,12}] (* Harvey P. Dale, Dec 25 2016 *)

A208221 a(n)=(a(n-1)^2*a(n-3)^2+a(n-2))/a(n-4) with a(0)=a(1)=a(2)=a(3)=1.

Original entry on oeis.org

1, 1, 1, 1, 2, 5, 27, 2921, 106653026, 1658455747832683945, 869174798276372512100586962107665002957113
Offset: 0

Views

Author

Matthew C. Russell, Apr 25 2012

Keywords

Comments

This is the case a=2, b=1, c=2, y(0)=y(1)=y(2)=y(3)=1 of the recurrence shown in the Example 3.3 of "The Laurent phenomenon" (see Link lines, p. 10).
The next term (a(11)) has 97 digits. - Harvey P. Dale, Dec 17 2017

Crossrefs

Programs

  • Maple
    y:=proc(n) if n<4 then return 1: fi: return (y(n-1)^2*y(n-3)^2+y(n-2))/y(n-4): end:
    seq(y(n),n=0..11);
  • Mathematica
    a[n_] := a[n] = If[n <= 3, 1, (a[n-1]^2*a[n-3]^2 + a[n-2])/a[n-4]];
    Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Nov 24 2017 *)
    RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==1,a[n]==(a[n-1]^2 a[n-3]^2+ a[n-2])/ a[n-4]},a,{n,12}] (* Harvey P. Dale, Dec 17 2017 *)

A208223 a(n) = (a(n-1)*a(n-3)^3+a(n-2))/a(n-4) with a(0)=a(1)=a(2)=a(3)=1.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 5, 43, 583, 24306, 386499545, 1781091354996947, 43869039083107828857967559, 104205727286975116465887590166696643681426291537, 1523355234093129576841463666274426784578547247551635338205747270819704358703763325458
Offset: 0

Views

Author

Matthew C. Russell, Apr 25 2012

Keywords

Comments

This is the case a=3, b=1, c=1, y(0)=y(1)=y(2)=y(3)=1 of the recurrence shown in the Example 3.3 of "The Laurent phenomenon" (see Link lines, p. 10).

Crossrefs

Cf. A048736.

Programs

  • Magma
    [n le 4 select 1 else (Self(n-1)*Self(n-3)^3+Self(n-2))/Self(n-4): n in [1..15]]; // Bruno Berselli, Apr 26 2012
  • Maple
    y:=proc(n) if n<4 then return 1: fi: return (y(n-1)*y(n-3)^3+y(n-2))/y(n-4): end:
    seq(y(n),n=0..14);
  • Mathematica
    RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==1,a[n]==(a[n-1]a[n-3]^3+a[n-2])/ a[n-4]},a,{n,20}] (* Harvey P. Dale, Jul 13 2014 *)

A208228 a(n)=(a(n-1)^3*a(n-3)^4+a(n-2))/a(n-4) with a(0)=a(1)=a(2)=a(3)=1.

Original entry on oeis.org

1, 1, 1, 1, 2, 9, 731, 6249886265, 800859597553373777918076329400178
Offset: 0

Views

Author

Matthew C. Russell, Apr 25 2012

Keywords

Comments

This is the case a=4, b=1, c=3, y(0)=y(1)=y(2)=y(3)=1 of the recurrence shown in the Example 3.3 of "The Laurent phenomenon" (see Link lines, p. 10).

Crossrefs

Programs

  • Maple
    y:=proc(n) if n<4 then return 1: fi: return (y(n-1)^3*y(n-3)^4+y(n-2))/y(n-4): end:
    seq(y(n),n=0..9);
  • Mathematica
    RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==1,a[n]==(a[n-1]^3 a[n-3]^4+ a[n-2])/ a[n-4]},a,{n,10}] (* Harvey P. Dale, Jan 08 2014 *)

A275175 a(n) = (2 * a(n-3) + a(n-1) * a(n-5)) / a(n-6), a(0) = a(1) = ... = a(5) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 5, 7, 13, 23, 83, 147, 215, 423, 771, 2801, 4971, 7281, 14351, 26181, 95133, 168845, 247317, 487493, 889373, 3231703, 5735737, 8401475, 16560393, 30212491, 109782751, 194846191, 285402811, 562565851, 1026335311, 3729381813, 6619034735, 9695294077, 19110678523
Offset: 0

Views

Author

Seiichi Manyama, Jul 19 2016

Keywords

Comments

Inspired by A048736.

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == (2 a[n - 3] + a[n - 1] a[n - 5])/a[n - 6], a[1] == 1, a[2] == 1, a[3] == 1, a[4] == 1, a[5] == 1, a[6] == 1}, a, {n, 40}] (* Michael De Vlieger, Jul 19 2016 *)
  • PARI
    Vec((1 +x +x^2 +x^3 +x^4 -34*x^5 -32*x^6 -30*x^7 -28*x^8 -22*x^9 +23*x^10 +13*x^11 +7*x^12 +5*x^13 +3*x^14) / ((1 -x)*(1 +x +x^2 +x^3 +x^4)*(1 -34*x^5 +x^10)) + O(x^50)) \\ Colin Barker, Jul 19 2016
  • Ruby
    def A(k, l, n)
      a = Array.new(k * 2, 1)
      ary = [1]
      while ary.size < n + 1
        break if (a[1] * a[-1] + a[k] * l) % a[0] > 0
        a = *a[1..-1], (a[1] * a[-1] + a[k] * l) / a[0]
        ary << a[0]
      end
      ary
    end
    def A275175(n)
      A(3, 2, n)
    end
    

Formula

G.f.: (1 +x +x^2 +x^3 +x^4 -34*x^5 -32*x^6 -30*x^7 -28*x^8 -22*x^9 +23*x^10 +13*x^11 +7*x^12 +5*x^13 +3*x^14) / ((1 -x)*(1 +x +x^2 +x^3 +x^4)*(1 -34*x^5 +x^10)). - Colin Barker, Jul 19 2016
a(n) = 35*a(n-5) - 35*a(n-10) + a(n-15). - G. C. Greubel, Jul 20 2016

A275176 a(n) = (3 * a(n-3) + a(n-1) * a(n-5)) / a(n-6), a(0) = a(1) = ... = a(5) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 4, 7, 10, 22, 43, 202, 370, 547, 1264, 2521, 11881, 21781, 32221, 74521, 148681, 700744, 1284667, 1900450, 4395442, 8769643, 41331982, 75773530, 112094287, 259256524, 517260241, 2437886161, 4469353561, 6611662441, 15291739441, 30509584561
Offset: 0

Views

Author

Seiichi Manyama, Jul 19 2016

Keywords

Comments

Inspired by A048736.

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == (3 a[n - 3] + a[n - 1] a[n - 5])/a[n - 6], a[1] == 1, a[2] == 1, a[3] == 1, a[4] == 1, a[5] == 1, a[6] == 1}, a, {n, 36}] (* Michael De Vlieger, Jul 19 2016 *)
  • PARI
    Vec((1 +x +x^2 +x^3 +x^4 -59*x^5 -56*x^6 -53*x^7 -50*x^8 -38*x^9 +43*x^10 +22*x^11 +10*x^12 +7*x^13 +4*x^14) / ((1 -x)*(1 +x +x^2 +x^3 +x^4)*(1 -59*x^5 +x^10)) + O(x^50)) \\ Colin Barker, Jul 19 2016
  • Ruby
    def A(k, l, n)
      a = Array.new(k * 2, 1)
      ary = [1]
      while ary.size < n + 1
        break if (a[1] * a[-1] + a[k] * l) % a[0] > 0
        a = *a[1..-1], (a[1] * a[-1] + a[k] * l) / a[0]
        ary << a[0]
      end
      ary
    end
    def A275176(n)
      A(3, 3, n)
    end
    

Formula

G.f.: (1 +x +x^2 +x^3 +x^4 -59*x^5 -56*x^6 -53*x^7 -50*x^8 -38*x^9 +43*x^10 +22*x^11 +10*x^12 +7*x^13 +4*x^14) / ((1 -x)*(1 +x +x^2 +x^3 +x^4)*(1 -59*x^5 +x^10)). - Colin Barker, Jul 19 2016
a(n) = 60*a(n-5) - 60*a(n-10) + a(n-15).

A276531 a(n) = (a(n-1) * a(n-5) + a(n-2) * a(n-3) * a(n-4)) / a(n-6), with a(0) = a(1) = a(2) = a(3) = a(4) = a(5) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 3, 5, 11, 41, 247, 1498, 39629, 3121233, 1344630757, 4527359876765, 673384475958949877, 12684198948982702826816701, 103442271685605704255863097581658042, 12389248756108266360505757651017660004796444483503, 657084395567781339286109602463271066924826185667810218784212689809097
Offset: 0

Views

Author

Seiichi Manyama, Nov 16 2016

Keywords

Comments

This sequence is the generalization of Dana Scott's sequence (A048736).
Conjecture: a(n) is an integer for all n. It has been checked by computer for 0 <= n <= 50.
The recursion has the Laurent property. If a(0), ..., a(5) are variables, then a(n) is a Laurent polynomial (a rational function with a monomial denominator). - Michael Somos, Nov 21 2016

Crossrefs

Programs

  • GAP
    a:=[1,1,1,1,1,1];; for n in [7..25] do a[n]:=(a[n-1]*a[n-5]+a[n-2]*a[n-3]*a[n-4])/a[n-6]; od; a; # Muniru A Asiru, Jul 30 2018
  • Magma
    I:=[1,1,1,1,1,1]; [n le 6 select I[n] else (Self(n-1)*Self(n-5) + Self(n-2)*Self(n-3)*Self(n-4))/Self(n-6): n in [1..30]]; // G. C. Greubel, Jul 30 2018
    
  • Mathematica
    RecurrenceTable[{a[n] == (a[n - 1] a[n - 5] + a[n - 2] a[n - 3] a[n - 4])/a[n - 6], a[0] == a[1] == a[2] == a[3] == a[4] == a[5] == 1}, a, {n, 0, 21}] (* Michael De Vlieger, Nov 21 2016 *)
    nxt[{a_,b_,c_,d_,e_,f_}]:={b,c,d,e,f,(b*f+d*e*c)/a}; NestList[nxt,{1,1,1,1,1,1},30][[All,1]] (* Harvey P. Dale, Nov 21 2021 *)
  • Ruby
    def A(k, n)
      a = Array.new(k, 1)
      ary = [1]
      while ary.size < n + 1
        i = a[-1] * a[1] + a[2..-2].inject(:*)
        break if i % a[0] > 0
        a = *a[1..-1], i / a[0]
        ary << a[0]
      end
      ary
    end
    def A276531(n)
      A(6, n)
    end
    

Formula

a(n) * a(n-6) = a(n-1) * a(n-5) + a(n-2) * a(n-3) * a(n-4).
a(5-n) = a(n) for all n in Z.
Previous Showing 11-20 of 27 results. Next